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Abstract

A variety of methods for smoothing scattered data are reviewed in consideration for
the Level 3 processing of the Aquarius data. It is argued that local polynomial smoothing
has the best combination of features. The equations to be implemented are presented,
and possible refinements are discussed.

1 Introduction

The Level 3 processing of Aquarius satellite data takes measurements at the boresight locations
of the three radiometer beams (see Fig. 1), which have been already converted into physical
units of salinity, and maps these onto a 1◦ grid. The Level 3 monthly product must satisfy the
following requirements:

• The global RMS error is no greater than 0.2 psu.
• The noise decorrelation scale of the mapped field is ∼ 150 km.

Figure 1: The Aquarius boresight tracks over the North Atlantic Ocean.
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Of course, the simplest solution is simply to bin-average the data, leaving behind some “holes”
at certain latitude/longitude locations. It is agreed that such a bin-averaged product should
be produced. Obtaining a smoothed, spatially mapped field with no gaps is also desired. This
problem is a subset of the problem of smoothing scattered data, which occurs frequently in
oceanography and in particular in the treatment of satellite data. There are many solutions to
this problem which differ both in philosophy as well as in appropriateness for particular set-
tings. Here various approaches are reviewed in the light of the Aquarius mission requirements
and sampling characteristics. Locally polynomial regression is recommended, as this is method
offers explicit control over smoothness and locality, encompasses a range of possibilities from
very simple to more refined, and is straightforward to both implement and to interpret.

2 Design considerations

In addition to the above requirements, we may note the following rule of thumb:

• The gridded data should be free from spurious structure.

the importance of which was suggested to us by M. Freilich. To the extent this goal may be
realized, it will prevent misinterpretation of grid or mapping effects as representing physical
phenomena. We may also demand that

• The mapped product should be accompanied by error estimates.

Earlier analysis suggested that, with realistic estimates of noise sources, the 0.2 psu can be
met with even the simplest smoothing algorithm. The problem then becomes one of obtaining
a mapped field, free from spurious structure, with a relatively small noise decorrelation scale.
Significantly, we note later that the decorrelation scale of the sea-surface salinity (SSS) field
itself is on the order of 500 km.

The Aquarius boresight pattern over the North Atlantic ocean is shown in Fig. 1. The rela-
tionship of the sampling pattern to a 1◦ grid is shown in Fig. 2, with each point representing a
XX-second average. The sampling pattern is actually very tight, with most grid boxes having
between one and four sample points. However, occasional grid boxes have zero sample points
in them. The distribution of “empty” grid boxes exhibits latitudinal dependence owing to the
peculiarities of the Aquarius sampling pattern; note that this pattern is not symmetric about
the equator. Locations where two or even three beams coincide are seen. One of the challenges
of the Aquarius Level 3 processing is to minimize the imprint of this spatially inhomogeneous
sampling on the mapped product.

3 General problem

Let’s say that we have observations gn at data points xn, n = 1 . . . N and we wish to obtain an
estimate ĝ(x) of the field g(x). (Here, and in most of what follows, we consider a univariate field
for simplicity.) There are several goals implicit in this problem: i) We wish to obtain estimates
of the field g(x) at locations x at which there are no data points; ii) we wish to smooth the
observations in order to reduce the presumed noise in the observations, which we model as

gn = g(xn) + εn(xn) (1)

where εn(x) is a discrete noise process of perhaps unknown statistics, which may depend upon
the spatial location x; and finally iii) we wish to reconcile conflicting data points which reflect
actual variability of g(x) at smaller scales than those of interest. The problem is complicated
by the fact that measurement locations xn may be irregularly spaced. In a nutshell, we wish
to smooth scattered data.

For the Aquarius satellite, each orbit is a sequence of latitude/longitude locations (φnk, θnk)
n = 1 . . . N observed at times tn, where k = 1, 2, 3 is an index into the three different beams.
We may take the observed quantity

gnk = g(φnk, θnk) + εnk(φnk, θnk) (2)
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Figure 2: Northern hemisphere Aquarius boresight distribution with respect to an underlying 1◦grid in
various latitude bands.

to be the skin salinity g(φ, θ) plus measurement noise, although of course this interpretation
reflects a great deal of internal processing to generate a salinity signal from the radiometric mea-
surements. Note that we let the noise process εnk(φnk, θnk) be an explicit function of the beam
number. Time dependence is neglected at the moment. Again we wish to smooth scattered
data, but with additional complications of two-dimensionality and of multiple sensors.

4 Linear methods

There is a vast body of literature dealing with smoothing scatter data, since it is one of the
key problems of statistical analysis. The majority of popular methods are linear in the data,
which means the estimate ĝ(x) can be written as

ĝ(x) =

∑N
n=1 gnwn(x)∑N

n=1wn(x)
(3)
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for some weighting function wn(x) which perhaps depends upon the spatial location x. The
simplest example of course is to choose

wn(x) = w (|x− xn|) (4)

with w(x) being, say, a Gaussian. Then (3) simply describes smoothing all available data with
a Gaussian weight.

All the methods to be discussed here are linear in the data. This means that they can all
be written as in (3). The different methods essentially amount to different means of choosing
the weighting function wn(x). Thus these different methods are justified by different lines of
argument for what constitutes the best weighting function.

In general, one may hope for two degrees of adjustability: smoothness and locality. One
would like to control both how smooth or rough the resulting estimate ĝ(x) is, and also the
radius |x− xn| over which observation points xn influence the estimate at x. Not all methods
permit adjustability of both of these degrees independently, and they generally differ in the
ways in which these aspects are specified.

It is useful to mention some methods which, though not useful in practice, illustrate the
continuum of possibilities. We may simply interpolate the data between observation points.
This method leads to a highly localized estimate ĝ(x) at each point x, but involves no smooth-
ing whatsoever and hence will be unsatisfactorily noisy. On the other hand, we may fit the
entire dataset to a polynomial. This method is entirely global, and one controls the degree of
smoothness by the order of the polynomial, with higher-order fits permitting rougher estimated
fields ĝ(x). Global methods are not usually appropriate when one has spatially inhomogeneous
structure in the underlying field g(x).

5 Kernel estimators

The most straightforward method is simply to directly specify a fixed weighting function as in
(4). Such methods are called linear smoothers, convolution estimators, or kernel estimators,
and are reviewed by Fan and Gijbels (1996). The function w(x) is generally written as

w(x) = K (x/h) /h (5)

where K(x) is a symmetric probability density function and is called the kernel, and the pa-
rameter h is called the bandwidth. As the bandwidth increases, the radius of influence increases
and hence also does the number of observation points included in the estimate.

Kernel methods have strengths and weaknesses. Their primary strength is their simplicity.
Since the smoothing kernel is fixed, one may obtain simple expressions for expected value and
variance (Fan and Gijbels, 1996) in terms of the underlying field g(x), the density of observa-
tion points f(x), and the variance of the noise. Furthermore, with kernel methods we know
precisely what has been done to the data, a very appealing property. The main drawback of
such methods is that they do not allow smoothness and locality to be independently adjusted.
Increasing the bandwidth simultaneously increases the smoothness and reduces the locality
of the resulting estimate. This limitation arises because kernel methods are essentially the
lowest-order member of local polynomial fitting, and locally fit the data to a constant (Fan and
Gijbels, 1996). The missing degree of freedom would come from increasing the order of the
polynomial fit, which decreases the smoothness with fixed locality.

Nevertheless, since they are the simplest method, kernel estimators provide a natural start-
ing place. In earlier work, we applied the kernel estimator (using a 75 km standard deviation
Gaussian) to synthetic Aquarius data, and found the agreement to be quite favorable. Our ap-
proach should only increase in complexity if it proves to be valuable in practice. Kernel smooth-
ing also provides an extremely useful reference point for other methods. In order to understand
other methods, we may cast them in the form (3), and demand to know to what smoothing
kernel they correspond. In this way we can keep track of exactly what is being done to the data.
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6 Optimal Interpolation

A very popular method in the oceanographic community is Optimal Interpolation (OI), known
also as Gauss-Markov estimation and sometimes as Objective Analysis, which was introduced
to oceanography by Bretherton et al. (1976). A straightforward treatment is given by McIntosh
(1990). The idea of OI is to choose the weight function w(x) such that the mean-square error

E2 =
N∑

n=1

E
{
|g(xn)− ĝn(xn)|2

}
(6)

is minimized; here “E” is the expectation operator. If the covariance of the field g(x) between
pairs of observation points xn, xm—written Cov {g(xn), g(xm)}—is known, the covariance of
the noise Cov {εn, εm} is known, and the cross covariance of the observed field and the noise
Cov {g(xn), εm} is also known, then the form of weighting function w(x) which minimizes (6)
can be found. The method is also frequently used in a moving-window sense in which (6) is
minimized over some local region.

In many situations it is the case that one has a sufficient history of observations, or else
sufficient theoretical motivation, to confidently specify the data covariance function in a given
region. It is also frequently the case that the noise is uncorrelated, and hence Cov {εn, εm} =
σ2δnm where δnm is the Kronecker delta-function. Finally one often has the data and noise
being independent such that Cov {g(xn), εm} = 0. With these three conditions, the OI solution
simplifies dramatically (McIntosh, 1990). The original application by Bretherton et al. (1976)
was in an open-ocean case in which the data covariance could reasonably be prescribed on
theoretical grounds.

The most desirable feature of OI is that, given the statistics of the data, the error, and their
cross statistics, it yields the best linear estimator in the sense of having the smallest expected
error. Its main difficulty is that the statistics upon which this interpretation hinges are often
quite unknown. Additionally, strictly speaking, OI offers zero degrees of adjustability. It is
intended to offer in a sense the correct answer.

Independent of the interpretation of the OI solution as the minimum-error solution for a
given set of covariances, it is possible to adjust the solution by choosing different covariance
functions. Specifying the (unknown) covariance function of the data also specifies the weighting
function wn(x) of the linear estimate. Because of this, it is not necessary that the specified
covariance function be a realistic representation of the true covariance function of the data in
order for OI to yield pleasing results. However, if the covariance function is not known, it is
preferable to leave aside OI and return to direct specification of the smoothing kernel.

There is a large literature both using OI and also analyzing its properties. McIntosh (1990)
presented the theoretical relationship between OI and smoothing spline solutions, discussed
subsequently. The sensitivity of the solution to changes in the specified covariance function
was examined numerically by Franke (1991). Brankart and Brasseur (1996) used the “Gen-
eralized Cross-Validation” method of Wahba and Wendelberger (1980) to infer the unknown
statistical information in an application to a Mediterranean Sea data set. A fast multiscale OI
algorithm was presented by Menemenlis et al. (1997). Franke (1985) and Sokolov and Rintoul
(1999) both compare OI with other methods.

The most relevant application of OI for the Aquarius satellite is that of Reynolds and Smith
(1994). That paper describes using OI to generate global sea surface temperature maps on a
1◦ grid from a blend of satellite radiometer and in situ data. Those authors fit the covariance
function of sea surface temperature observations to the anisotropic Gaussian model

Cnm = A exp

{
−(xn − xm)2

λ2
x

− (yn − ym)2

λ2
y

}
(7)
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where A is a normalizing constant. It was found that the zonal length scale λx is 500–1000 km,
while the meridional length scale λy is 500–700 km; see Fig. 3. These large length scales arise
because the sea-surface temperature is dominated by the gyre-scale patterns. One reason OI
is used is that permits inclusion of a first-guess field. The radiometric sea surface temperature
measurements suffer from substantial data dropout. The first-guess field is taken to be a com-
plete map from the previous week, and this field is returned over locations for which there is
no data during the current week.

OI is unlikely to be valuable to Aquarius for several reasons. Firstly, in contrast with
Reynolds and Smith (1994), the large data dropout problem which OI is used to solve for sea
surface temperature is not expected to be a major problem for Aquarius. Instead, the main
problem will be locally fill in small “holes” in the sampling pattern. The Aquarius sampling
pattern is actually quite dense, and therefore the gridding problem involves a sensible choice of
small-scale smoothing. Secondly, the decorrelation lengths for sea-surface salinity—which will
be comparable to those found by Reynolds and Smith (1994) for sea-surface temperature—are
considerably larger than the decorrelation scale specified in the mission requirement. Finally,
the OI analysis of Reynolds and Smith (1994) was implemented after a decade’s worth of
sea-surface temperature measurements from satellites. In contrast, sea-surface salinity mea-
surements are considerably more sparse, and satellite measurements have never been carried
out before. This means that there is a great deal of uncertainty in the correlation functions
which are needed to complete the OI.

7 Smoothing splines

The idea of the smoothing spline solution (Wahba and Wendelberger, 1980; Gu, 2002) is to
minimize the combination of the mean square error plus a roughness penalty. The quantity to
be minimized is written as

1

N

N∑
n=1

|gn − ĝn(xn)|2 + λJ (ĝ) (8)

where J is an operator which corresponds to a particular measure of smoothness, and λ is a
smoothing parameter which controls the trade-off between solution error and smoothness. A
typical choice of J is

J (ĝ) =

∫ [
d2

dx2
ĝ(x)

]2

dx (9)

in which case (8) expresses the trade-off between solution error and global-average curvature
magnitude; in this case the solution is a cubic spline. The choice λ = 0 then corresponds to exact
interpolation, because the penalty on solution curvature has vanished, whereas λ = ∞ results
in a linear regression model because the solution can have no curvature (Fan and Gijbels, 1996).

An important question involves what smoothing spline interpolation is actually doing to
the data. It has been shown (Silverman, 1984, 1985) that the cubic spline corresponds ap-
proximately to a kernel smoothing with variable bandwidth. The expression will depend upon
the probability density f(x) of the sample points, which are taken to be randomly distributed.
Specifically, for the sample size N large and the smoothing parameter λ relatively small, one
may cast the solution in the form of the linear smoother

ĝ(x) =
1

N

N∑
n=1

gnwn(x) (10)

with weighting function

wn(x) ≈ 1

f(xn)h(xn)
Ks

(
xn − x
h(xn)

)
(11)
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Figure 3: The zonal (upper) and meridional (lower) length scale in a Gaussian fit to the SST covariance
function, from Reynolds and Smith (1994).
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where the bandwidth and the smoothing kernel are given by

h(xn) =

[
λf(xn)

N

]1/4

(12)

Ks(x) =
1

2
e−|x|/

√
2 sin

(
|x|/
√

2 + π/4
)

(13)

as discussed in Silverman (1985) and Fan and Gijbels (1996). The most interesting feature is
that the bandwidth varies spatially, and shrinks as the density of sample points increases.

Smoothing splines have a number of attractive properties, and have been frequently in-
vestigated and applied since the pioneering work of Wahba and Wendelberger (1980). The
minimization of (8) can be given a statistical interpretation either in terms of a penalized likeli-
hood method or a Bayesian framework (Gu, 2002). Varying the choice of operator J corresponds
to different notions of “smoothness”, with the practical consequence for the spectral response
of the implied smoothing kernel, as discussed in McIntosh (1990) and Sokolov and Rintoul
(1999). Much work has gone into methods for choosing the smoothing parameter λ, the most
well-known of which is the method of generalized cross-validation (Wahba and Wendelberger,
1980) which corresponds to choosing λ in order to minimize an estimate of the mean square
error. The smoothing spline method has also been generalized to spherical geometry by Wahba
(1981). A long-standing issue has been computational cost; however, recent work on fast, ef-
ficient approximation (Kim and Gu, 2004) permits application to larger datasets. Smoothing
splines and optimal interpolation, both being linear methods, are formally equivalent, and their
connection was investigated in detail by McIntosh (1990).

Nevertheless, the smoothing spline method does not appear most well-suited for the Aquar-
ius application. The degrees of freedom which are explicitly controlled by the smoothing spline
method—namely, the choice of penalty operator J , and the smoothing parameter λ—do not
appear to be the most useful parameters for this problem. The mission requirement of a 150 km
decorrelation length means it is desirable to maintain explicit control over the bandwidth, which
is only indirectly related to J and λ. Locality and smoothness are not controlled in a way which
is convenient for the application to Aquarius.

Consider first penalty operator J . In some cases there is a natural choice for J ; for example,
if we seek to map the streamfunction ψ(x, y), then minimizing the curvature has a physical in-
terpretation in terms of the vorticity ∇2ψ(x, y). Minimizing the curvature of the global salinity
field has no such physical motivation, apart from being a convenient way to generate a smooth
estimate. More importantly, the 150 km decorrelation mission requirement implies that λ is not
free because increasing λ also increases the bandwidth. We can therefore not take advantage
of methods for finding the optimal choice of λ; based on the discussion in the previous section,
the optimal choice will likely imply a much larger bandwidth than the mission requirement.

There is another, more subtle issue. For a fixed choice of λ, the implicit bandwidth in the
smoothing spline method automatically adjusts to account for differences in data density, as
seen in (12). Thus, given the inhomogeneity of the Aquarius sampling grid, the effective radius
over which the data will be smoothed will also vary spatially. Even if λ is chosen such that
the mission requirement is satisfied, it is not immediately obvious that such spatially variable
smoothing would be desirable. Rather, our initial impression is that the bandwidth should
be kept spatially uniform in order to avoid the possibility of creating artifacts in the mapped
field. The possibility of spatially nonuniform smoothing could be returned to later if more
straightforward options prove unsatisfactory.

8 Local polynomial fitting

This brings us to local polynomial fitting (Fan and Gijbels, 1996), our method of choice. The
idea here is to fit a P th-order polynomial in the vicinity of each grid point xm, m = 1, 2, . . .M .
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For data values gn observed at locations xn, n = 1, 2, . . . N , this corresponds to minimizing

N∑
n=1

∣∣∣∣∣gn −
P∑

p=0

β̂p(x) [xn − x]p

∣∣∣∣∣
2

Kh(xn − x) (14)

at every grid point x = xm, where Kh(x) = K(x/h)/h is a decaying weighting function
which depends upon the bandwidth h, with K(x) being a probability distribution function.

The regression coefficients β̂p(x), p = 1, 2, . . . P vary with spatial location, and are estimated
at all grid point locations. The function g(x) is estimated by the lowest-order coefficient,

ĝ(x) = β̂0(x), while higher-order regression coefficients estimate the derivatives of the field

through ĝ(p)(x) = p!β̂p(x).
The adjustability of this method is primarily through the choice of bandwidth h, which may

be either a constant or spatially varying, as well as through the order polynomial fit P . Increas-
ing the order of the polynomial increases the degrees of freedom of the solution, reducing model
bias at the expense of potentially increased variance due to under-smoothing the measurement
noise. The P = 0 case corresponds to a constant fit, and the solution is equivalent to the ker-
nel smoothing method presented earlier. This is immediately attractive for Aquarius because
the degree of smoothness, specified by the polynomial order, is controlled independently from
the bandwidth. The bandwidth may be specified, or alternatively, methods are available for
choosing an optimal fixed or spatially varying bandwidth (Fan and Gijbels, 1996); however, it
is not obvious that these will be consistent with the Aquarius mission requirements.

Various choices of weighting function K(x) are also possible. It can be shown that an
optimal choice is the parabolic function (Fan and Gijbels, 1996)

Ke(x) =
3

4
U(1− |x|)

[
1− x2

]
(15)

where U(x) is the unit step function. The function Ke(x), called the Epanechnikov kernel, is
simply a parabola which descends from a maximum at the origin to a value of zero at |x| = 1.
The Epanechnikov kernel is optimal in the sense that it minimizes the asymptotic mean square
error of the resulting estimate. Another popular choice is the Gaussian weighting function,
while some authors (e.g. Cleveland and Devlin, 1988) use a tri-cubic kernel proportional to

(1− |x|3)3
. However, the exact choice of the weighting function does not appear to be partic-

ularly important for solution performance (Fan and Gijbels, 1996).
The simplicity of the method means that a broad range of theoretical results are readily

available. For general order of fit P , it is straightforward to cast the solution in terms a linear
smoother (3) with an equivalent kernel, in order that we may keep track of exactly what is being
done to the data. The equivalent kernel depends upon the choice of Kh(x) in (14), the fit order

P , and the order of the coefficient β̂p. The method also admits simple expressions for asymptotic
bias, variance, and also confidence intervals of estimated field (Fan and Gijbels, 1996), a prop-
erty that will be useful in eventually producing error maps associated with the salinity fields.

The “LOESS” method (Cleveland and Devlin, 1988) preferred by Chelton and Schlax (1994)
is a variant of this class of smoothing method. Its main differences are a somewhat different
notion of bandwidth (involving an nth nearest-neighbor consideration) as well as an iterative
procedure intended to minimize the impact of statistical outliers. This iterative algorithm has
advantages and disadvantages. It introduces complexity, and can lead to unpredictable behav-
ior which cannot be captured by the simple theoretical expressions for error; but it can give
practical advantages if outliers are indeed a problem.

The above discussion focuses on a univariate application, while of course for Aquarius we
are mapping a surface. The generalization to this bivariate case is straightforward up to the
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local linear fit (Fan and Gijbels, 1996), and can be extended to higher orders if necessary. For
convenience, we use the Cartesian coordinates x = [x y]T and ignore the effects of sphericity.
We now replace the kernel function with

KB(x) ≡ K
(∣∣B−1 x

∣∣) (16)

where |x| ≡
√

xT x denotes the Cartesian length of the vector x, and B is a 2×2 matrix of unit
determinant which permits anisotropic smoothing. For example, B may consist of a rotation of
plus a differential stretching in order to preferentially smooth along one direction rather than
another; B = I, with I being the identity matrix, is of course the isotropic case. The bivariate
version of the Epanechnikov kernel is (Fan and Gijbels, 1996)

Ke(x) =
2

π
U(1− |x|)

[
1− |x|2

]
(17)

which, as in the univariate case, is optimal.
With data values gn observed at locations xn ≡ [xn yn]T , n = 1, 2, . . . N , the local linear fit

is obtained by minimizing

N∑
n=1

∣∣∣gn − β̂0(x)− β̂x(x) [xn − x]− β̂y(x) [yn − y]
∣∣∣2KB(xn − x) (18)

at every grid point x ≡ [x y]T = xm, m = 1, 2, . . .M . The estimated two-dimensional surface

ĝ(x) is then given by ĝ(x) = β̂0(x), and the gradient vector ∇g(x) is directly estimated as

∇̂g(x) = [β̂x(x) β̂y(x)]T . The solution to the locally linear two-dimensional smoothing prob-
lem is known immediately from least squares theory and can be cast conveniently in matrix
form. Define the N × 3 matrix

X(x) ≡


1 x1 − x y1 − y
1 x2 − x y2 − y
...

...
...

1 xn − x yn − y

 (19)

together with the N × N weight matrix W(x) ≡ diag {KB(xn − x)}, the data vector g ≡
[g1 g2 . . . gN ]T , and the solution vector β(x) ≡ [β̂0(x) β̂x(x) β̂y(x)]T . The solution is then
given by (??)

β(x) =
(
XT WX

)−1
XT Wg (20)

where the superscript “−1” denotes the usual matrix inverse; the functional dependence on
location x is suppressed on the right-hand side for clarity. Implementing this at every grid point
x = xm, m = 1, 2, . . .M , we obtain the desired estimate of the mapped field and its gradient.

Because of a variety of factors—its simplicity, the direct adjustability of order and band-
width, the availability of theoretical results for bias and variance, and the existence of a va-
riety of more advanced extensions—the local polynomial smoothing seems the ideal method
for Aquarius. We will begin with the locally linear model (18) with isotropic, spatially fixed
variance and with options for both the Epanechnikov and Gaussian kernels. Initially, we will
investigate the advantage gained by the local linear fit with respect the locally constant fit im-
plied by the kernel smoothing method (3). The role of varying bandwidth within the constraints
of the mission requirement, and the differences between the two kernels, will be explored. The
following modifications are available for the future, should they be needed: extension to a local
quadratic fit; anisotropic or spatially varying smoothing; and robustification along the lines of
the LOESS method.
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9 Other methods

We mention in passing some other methods.

9.1 Radial basis functions

Another type of solution involves the use of “radial basis functions”, such as the “multiquadric-
biharmonic” (MQ-B) method advocated by Nuss and Titley (1994). Despite its complicated
name, this method is conceptually easy to understand. At each observation point, one places
an azimuthally symmetric decaying function. These radial basis functions are weighted by
coefficients which have yet to be determined. The global field is simply a superposition of con-
tributions from the different data points, spatially extended by the radial basis functions. The
coefficients are found by forcing agreement between the global field at the observation points
and the observed values. If the data are noisy, then a certain amount of mismatch may be
incorporated into the model, by introducing a “smoothing parameter” and estimating the noise
variance (Nuss and Titley, 1994).

The family of radial basis function methods consists of different choices for what decaying
function to choose as a basis, together with means for deciding on the value of the smoothing
parameter. In a comparison of different methods, Sokolov and Rintoul (1999) find good re-
sults using MQ-B for the analysis of hydrographic data, though those results are likely highly
dependent upon the particular application.

The main advantage of this method is that from any set of sparse measurements, one obtains
a smoothed field which is known everywhere. That is, once the coefficients are obtained—which
depend only on the observation points—the solution everywhere is also known. A disadvantage
as far as Aquarius is concerned is that obtaining a suitably smooth map becomes tied to the
problem of estimating the noise. Given the Aquarius sampling, it would seem that this method
would lead to results which are rather “bumpy”, as resolution is concentrated where the data
density is high. In any case, the method of radial basis functions do not appear to have as
broad applicability to the noisy data as do smoothing splines and local polynomial modeling.

9.2 Spatio-spectral localization

An interesting global method is the spatio-spectral localization solution of Simons et al. (2006).
Those authors revisit the time/frequency optimization problem of Slepian (1978) for the case
of spherical geometry. One may construct a set of eigenfunctions for the sphere which are
simultaneously localized in a given spatial region and a given spectral (i.e. spherical harmonic)
band. Increasing the number of included eigenfunctions leads to a more uniform coverage over
the target region, but with the trade-off of additional leakage. An example is shown in Fig. 4
for simultaneous localization in a spectral band and in the land regions of the earth’s surface.
The overshoot away from the continents is a manifestation of Gibbs’ effect.

Inverting the land solution leads to a set of eigenfunctions localized in the ocean; one
could also create eigenfunctions for the ocean fraction covered by the Aquarius satellite. These
eigenfunctions can become a smoothing method by simply projecting scattered data onto them.
This method is however inappropriate for mapping Aquarius at Level 3 because it is completely
global – a given data point could affect the solution everywhere on the globe. A fine control over
the degree of smoothness can be obtained through the choice of spectral band together with
the number of included eigenfunctions, but the eigenfunctions are by nature global functions.
Spatio-spectral localization could nevertheless be an interesting way to analyze Aquarius data
during earlier levels of processing.

9.3 Spherical wavelet basis

Another interesting method (Holschneider et al., 2003) decomposes the data set onto a local
wavelet basis appropriate for two-dimensional data on the sphere. The idea of this method is
to concentrate resolution where data density is high, which can be of great value for data which
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Figure 4: Total energy for a set of spectrally and spatially localized basis functions on the sphere, as the
number of included basis functions increases. Coverage of the target region, the land surfaces, increases as
more eigenfunctions are included, as does leakage into the ocean region. Taken from Simons et al. (2006).

exhibits inhomogeneous sampling patterns. By contrast, global projection methods have the
same resolution everywhere – and hence lead to artificial structure in data-poor regions. The
wavelet themselves also have an interesting physical interpretation as representing the solution
of the Laplace equation to multipole sources within the sphere (Holschneider et al., 2003).

Philosophically, this is the opposite of what we seek for the Aquarius mapping problem,
which is to obtain uniform spatial resolution despite spatially inhomogeneous sampling. While
it may be possible to set some coefficients to zero in order to control the smoothness of the
resulting field, this appears to be a not particularly explicit means of achieving our goals.

10 Summary

Of the various methods for the smoothing scattered data that are in common use, the most
appropriate for the Aquarius gritting problem seems to be the method of local polynomial
modeling. This method permits explicit control the bandwidth, which is directly to the decor-
relation scale, and also permits smoothness to be independently controlled by the order of the
fit. The “LOESS” method (Cleveland and Devlin, 1988) preferred by Chelton and Schlax (1994)
is a member of this class. An attractive feature here is the ability to increment complexity as
necessary. We may proceed from a locally constant fit, to a locally linear fit, to a higher-order
fit; we may introduce an iteration for robustness in the presence of outliers if required; and we
may move from a spatially constant isotropic smoothing window to an automatically adjusting
or anisotropic smoothing window if this is seen to lead to an advantage. This method permits
us to keep track of exactly what has been done to the data through simple expressions for
equivalent smoothing kernels, a feature which should help to guard against the misinterpreta-
tion of smoothing effects as being physical structure. Finally, theoretical expressions for bias
and variance are also available, which will be useful and eventually producing error maps along
with the salinity field.
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