# Compact Ocean Wind Vector Radiometer (COWVR) Project

# Temperature Sensor Data Record Data Product Description Document

B10.0

© 2023 California Institute of Technology. Government sponsorship acknowledged.

| Prepared by:                                                                                                      |          |          |  |
|-------------------------------------------------------------------------------------------------------------------|----------|----------|--|
| Kevin Mueller,<br>COWVR GDPS Software Engineer<br>Jet Propulsion Laboratory<br>California Institute of Technology | Date     | }        |  |
| Approved By:                                                                                                      |          |          |  |
| Albert Chang,<br>COWVR GDPS Software Engineer                                                                     | <br>Date | 3        |  |
| Eugene Chu,<br>COWVR Ground System Engineer                                                                       | Date     | 3        |  |
| Charles Thompson,<br>COWVR GDPS Manager                                                                           | Date     | <b>;</b> |  |

Jet Propulsion Laboratory California Institute of Technology

August 15, 2023 JPL D-82006

## **CHANGE** LOG

| DATE       | SECTIONS CHANGED                 | REASON FOR CHANGE                            | REVISION        |
|------------|----------------------------------|----------------------------------------------|-----------------|
| 4/19/17    | ALL                              |                                              |                 |
|            |                                  |                                              |                 |
| 4/15/21    | Many                             | Release 6 updates                            |                 |
|            |                                  |                                              |                 |
| 11/15/21   | Many                             | Release 7 updates                            | v7              |
|            |                                  |                                              |                 |
| 9/20/22    | 4.1, 4.3, 4.5-4.7, 5.3, 5.8, 6.2 | Release 7.3.5 updates                        | v7.3.5          |
| 02/22/2023 |                                  | Release 7.4.0, and separation into TSDR only | Initial Release |
|            |                                  | DPDD                                         |                 |
| 08/15/2023 | 4.3, 4.8                         | Release 8.0                                  |                 |
| 09/09/2024 | 4.3, 4.8                         | Release 10.0                                 | v10.0.1         |
|            |                                  |                                              |                 |
|            |                                  |                                              |                 |
|            |                                  |                                              |                 |

## **Table of Contents**

| <b>1</b> Int | troduction                                                      | 4  |
|--------------|-----------------------------------------------------------------|----|
| 1.1.         | Purpose and Scope                                               | 4  |
| 1.2.         | Mission Description                                             |    |
| 1.3.         | Instrument Description                                          |    |
| 1.4.         | Document Structure                                              |    |
| 2 Ov         | verview of COWVR                                                | 7  |
| 3 Da         | nta Products Overview                                           | 9  |
| 4 Te         | emperature Sensor Data Record (TSDR) Product Format Description | 10 |
| 4.1.         | Metadata                                                        |    |
| 4.2.         | FrameHeader                                                     | 12 |
| 4.3.         | GeolocationAndFlags                                             | 12 |
| 4.4.         | Ancillary                                                       | 15 |
| 4.5.         | InstrumentTemperatures                                          |    |
| 4.6.         | ChannelOrderedCounts                                            | 16 |
| 4.7.         | Calibration                                                     | 17 |
| 4.8.         | CalibratedSceneTemperatures                                     |    |
| 5 Re         | esampled Ancillary Product (Intermediate)                       | 21 |
| <b>5.1</b> . | Metadata                                                        | 21 |
| 5.2.         | Geolocation                                                     | 23 |
| 5.3.         | Ancillary Parameters                                            |    |
| 6 Da         | nta Product Names                                               | 24 |
| 6.1.         | Product types and names                                         | 24 |
| 6.2.         | File Naming Format                                              |    |
| 7 Ac         | knowledgement                                                   | 26 |

## 1 Introduction

## 1.1. Purpose and Scope

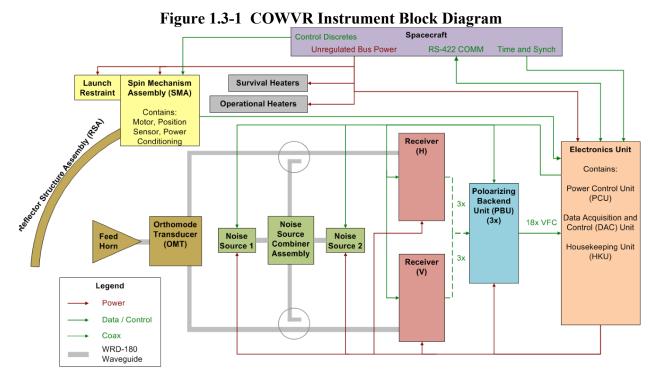
This Compact Ocean Wind Vector Radiometer (COWVR) Data Product Description Document (DPDD) describes the contents of the COWVR mission data products.

### 1.2. Mission Description

The United States Space Force (USSF), Space Systems Command, Development Corps for Innovation and Prototyping (SSC/DCI) is flying the JPL-provided Compact Ocean Wind Vector Radiometer (COWVR) and Temporal Experiment for Storms and Tropical Systems (TEMPEST) instruments as part of the Space Test Program - Houston 8 (STP-H8) technology demonstration mission.

The primary objective of STP-H8 Mission is to characterize and demonstrate the end-to-end COWVR performance relative to the Department of Defense (DoD) legacy microwave sensor WindSat on-orbit performance and mission requirements. A successful COWVR mission will demonstrate a lower-cost sensor architecture for providing imaging passive microwave data, including ocean surface vector wind (OSVW) products for DoD. The TEMPEST instrument, was included as an STP-H8 mission enhancement, in support of the SSC/DCI objective of Tropical Cyclone Intensity (TCI) tracking. The STP-H8 payload module with the COWVR and TEMPEST instruments was launched on December 21, 2021 and was installed on the International Space Station (ISS), Japanese Experiment Module – Exposed Facility (JEM-EF) on January 7, 2022. Both COWVR and TEMPEST are currently operating nominally on-orbit.

## 1.3. Instrument Description


The Compact Ocean Wind Vector Radiometer (COWVR) sensor is a fully polarimetric, conically imaging microwave radiometer, operating at 18.7 GHz, 23.8 GHz, and 34.5 GHz, for measuring ocean surface vector winds (OSVW). The novel COWVR design features include:

- the use of a single multi-frequency feed horn enabling a simple antenna rotating about the feed axis (as opposed to having to spin the entire radiometer system)
- internal polarimetric calibration sources which eliminate the need for an external warm load and cold sky reflector simplifying the mechanical design
- a compact MMIC receiver implementation, lowering the system mass, power and volume

Figure 1.3-1 shows the instrument block diagram and components. Subsystems are defined as follows:

• The Electronics Unit (EU) contains three sub-elements. The Power Control Unit (PCU) provides power to all secondary power from the unregulated spacecraft bus to the instrument electronics, excluding the mechanism (motor, motor controller, and position sensor). The Data Acquisition and Control (DAC) unit communicates with the spacecraft, supplies all RF control signals, and receives all RF and housekeeping data. The Housekeeping Unit (HKU) reads all engineering voltages and temperatures and

- supplies them to the DAC.
- The RF Subsystem consists of the feed horn, orthomode transducer (OMT), waveguides, Noise Source Combiner Assembly (NSCA), two noise sources, two receivers, and the Polarimetric Backend Unit (PBU).
- The Mechanical and Thermal Subsystem (MTS) consists of the launch restraint, thermal control system, reflector structure assembly (RSA), Spin Mechanism Assembly (SMA), and all structures to support the various instrument sub-element chassis. The SMA includes the motor, motor controller, position sensor, and mechanism power conditioning board.



1.4.1. Applicable Documents

**Document Structure** 

Figure 1.4-1 illustrates the COWVR requirements flow. This document is consistent and responsive to the requirements in the following requirements:

• COWVR Data Product Requirements Document (DPRD) (D-80123)

## 1.4.2. Acronyms

*1.4.* 

| ACS  | Attitude and Control System          |
|------|--------------------------------------|
| AMR  | Advanced Microwave Radiometer        |
| ATBD | Algorithm Theoretical Basis Document |

| APC   | Antenna Pattern Correction                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------|
| CALNS | Calibration Noise Source                                                                                                    |
| CFOV  | Composite Field of View (weighted average of IFOV main beam measurements calculated on the ground by re-sampling algorithm) |
| CM    | Center of Mass                                                                                                              |
| CSEQ  | Configuration Sequence                                                                                                      |
| CSEQ  | Configuration Sequence                                                                                                      |
| DAC   | Data Acquisition                                                                                                            |
| EPBR  | Electronic Polarization Basis Rotation                                                                                      |
| EPOI  | Effective Product of Inertia                                                                                                |
| ES    | Electronics Subsystem                                                                                                       |
| II&T  | Instrument Integration and Test                                                                                             |
| MSEQ  | Measurement Sequence                                                                                                        |
| IFOV  | Instantaneous Field of View (measured main beam)                                                                            |
| MIC   | Microwave Integrated Circuit                                                                                                |
| MMIC  | Monolithic Microwave Integrated Circuit                                                                                     |
| OSTM  | Ocean Surface Topology Mission                                                                                              |
| OSVW  | Ocean Surface Vector Winds                                                                                                  |
| OMT   | Ortho-mode Transducer                                                                                                       |
| PBU   | Polarimetric Backend Unit                                                                                                   |
| PCU   | Power Converter Unit                                                                                                        |
| PL    | Payload                                                                                                                     |
| PPS   | Pulse Per Second                                                                                                            |
| RFI   | Radio Frequency Interference                                                                                                |
| RSS   | Root Sum (of) Squares                                                                                                       |
| SMDE  | Spin Mechanism Drive Electronics                                                                                            |
| TB    | Brightness Temperature                                                                                                      |
| VFC   | Voltage to Frequency Converter                                                                                              |
| VNA   | Vector Network Analyzer                                                                                                     |

#### 2 Overview of COWVR

Conically imaging passive microwave radiometer systems such as the Special Sensor Microwave Imager (SSM/I, SSMIS), the Advanced Microwave Scanning Radiometer (AMSR-E, AMSR-2) and WindSat, have been providing critical environmental data for over 30 years. But over this time, the overall sensor design has remained largely unchanged. These conical sensors have three basic attributes; (1) A large, massive spun portion containing the radiometer and electronics system; (2) A de-spun external un-polarized warm target and cold sky reflector and; (3) a large feedhorn array and individual receivers for each frequency and polarization. These design attributes drive the instrument mechanical complexity, spacecraft accommodation (e.g. momentum compensation) and instrument cost. For example, the WindSat needed to offset 189 Nms of spun momentum from the sensor (Koss and Woolaway, 2006). The sensors that were in development for NPOESS (CMIS and later MIS) were each expected to exceed 300 kg, 300 W and cost more than \$100M (Chauhan, 2003). It is clear that a simplified design solution is needed to reduce the sensor mass, power, cost and accommodation, yet maintain the legacy performance.

The COWVR instrument uses an entirely different design to eliminate the instrument mechanical complexity that drives mass, power and cost. The enabling design features include (1) the use of a single multi-frequency feed horn permitting a simple antenna rotating about the feed axis, as opposed to having to spin the entire radiometer system and pass signals through the spin assembly; (2) internal calibration sources which enable fully polarimetric calibration and eliminate the need for an external warm load and cold sky reflector simplifying the mechanical design and enabling a complete 360° scan and; (3) a compact highly integrated MMIC polarimetric combining receiver implementation, lowering the system mass and power which in turn makes the system well suited for deployment on smaller class, lower cost satellites.

An illustration of the COWVR instrument design is shown in Figure 2-1. The instrument includes a single stationary multi-frequency feed horn that illuminates rotating reflector generating a 360° un-blocked conical scan. The reflector rotates at 30 RPM and provides a spatial resolution <35km and a swath width of 1012 km from the mission orbit altitude of 450km. After the feed, an orthomode transducer is used to separate the signal into two linear orthogonal components which are then fed via waveguide into MMIC multi-frequency receivers to amplify and filter the signals. The output from the receivers is input to a hybrid combining polarimetric backend unit which performs the analog in-phase and quadrature phase cross-correlation of the two signals to produce the +45, -45 and left and right circular polarized outputs.

The instrument is calibrated using PIN-diode switches internal to the receivers and a correlated noise source. The switches are used to toggle each receiver between an ambient reference load and the antenna. The correlated noise source is capable of generating known polarized signals by injecting correlated noise with a defined phase offset between the two receiver chains.

Because the feedhorn is fixed, the instrument polarization is fixed to the instrument frame and rotates relative to the Earth polarization basis. Because the instrument measures the full stokes vector, which completely describes the polarization state of the scene, a simple geometric

transform is used in ground processing to rotate the polarization from the fixed instrument frame to the Earth frame. This technique has been previously used in groundbased and airborne radiometer systems and is commonly referred to as Electronic Polarization Basis Rotation (EPBR) (Gasiewski et al., 1992; Lahtinen et al., 2003). This actually presents a calibration advantage which is discussed further in the COWVR calibration plan.

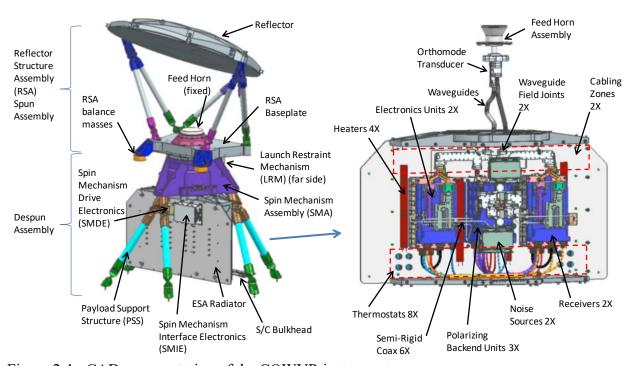



Figure 2-1. CAD representation of the COWVR instrument.

## 3 Data Products Overview

The COWVR ground data processing system (GDPS) produces three main data products, the Raw Data Record (RDR), Temperature Sensor Data Record (TSDR) and Environmental Data Record (EDR). Each file uses the Hierarchical Data Format, Version 5 (HDF-5) format. The RDR contains the raw unmodified COWVR telemetry packets converted into the HDF format along with raw unmodified spacecraft attitude and ephemeris for a time range that bounds the COWVR telemetry in the file. The STDR contains calibrated, geo-located antenna temperature and brightness temperatures along with the sensor telemetry used to derive those values. This product is best suited for a cal/val user or sensor expert. The EDR contains retrieval products and brightness temperatures and is best suited for the user interested in geophysical interpretation of the sensor data. This document describes the TSDR product, and some intermediate ancillary data.

## 4 Temperature Sensor Data Record (TSDR) Product Format Description

The TSDR contains 5 groups described below:

- Metadata : contains top level information about the file contents
- Frameheader: provides time formation for each packet in the file
- **Geolocation and Flags**: provides geolocation and geometric information for spacecraft and each COWVR observation as well as surface flags
- **Instrument Temperatures**: provides time series of COWVR measured instrument temperatures
- Channel Ordered Counts: provides times series of radiometer counts organized by frequency and polarization
- Calibration: Provides computed calibration data from the COWVR internal sources
- Calibrated Scene Temperatures: Provides calibration antenna and brightness temperatures

## 4.1. Metadata

| Name                      | Data<br>Type  | Dimensions | Unit  | Description                                                                                                                                                          | Minim<br>um | Maxim<br>um |
|---------------------------|---------------|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| InputPointer              | VarLenSt<br>r | InputPtr   |       | A pointer to one or more data granules that provide the major input that was used to generate this product.                                                          |             |             |
| AncillaryDataD escriptors | VarLenSt<br>r | AncFile    |       | The file names of the ancillary data files that were used to generate this product (ancillary data sets include all input files except for the primary input files). |             |             |
| CollectionLabel           | VarLenSt<br>r | Scalar     |       | Label of the data collection containing this product.                                                                                                                |             |             |
| SizeMBECSData<br>Granule  | Float32       | Scalar     | Mbyte | The size of this data granule in megabytes.                                                                                                                          |             |             |
| RangeBeginnin<br>gDate    | FixLenStr     | Scalar     |       | The date on which the earliest data contained in the product were acquired (yyyy-mm-dd).                                                                             |             |             |
| RangeEndingDa<br>te       | FixLenStr     | Scalar     |       | The date on which the latest data contained in the product were acquired (yyyy-mm-dd).                                                                               |             |             |
| RangeBeginnin<br>gTime    | FixLenStr     | Scalar     |       | The time at which the earliest data contained in the product were acquired (hh:mm:ss.mmmZ).                                                                          |             |             |
| RangeEndingTi<br>me       | FixLenStr     | Scalar     |       | The time at which the latest data contained in the product were acquired (hh:mm:ss.mmmZ).                                                                            |             |             |

| ProductionDate             | FixLenStr     | Scalar |   | The date and time at which the product                                                                                                 |  |
|----------------------------|---------------|--------|---|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Time                       | 1 IXECTION    | Scalar |   | was created (yyyy-mm-                                                                                                                  |  |
|                            |               |        |   | ddThh:mm:ss.mmmZ).                                                                                                                     |  |
| SISName                    | VarLenSt<br>r | Scalar |   | The name of the document describing the contents of the product.                                                                       |  |
| SISVersion                 | VarLenSt<br>r | Scalar |   | The version of the document describing the contents of the product.                                                                    |  |
| BuildId                    | VarLenSt<br>r | Scalar |   | The ID of build that included the software that created this product.                                                                  |  |
| GranuleNumber              | Singed32      | Scalar |   | Granule counter for the mission                                                                                                        |  |
| ChunkNumber                | Singed16      | Scalar |   | A chunk counter used when the granule is subdivided for processing                                                                     |  |
| QAGranulePoin<br>ter       | VarLenSt<br>r | Scalar |   | A pointer to the quality assessment product that was generated with this product.                                                      |  |
| GranulePointer             | VarLenSt<br>r | Scalar |   | The filename of this product.                                                                                                          |  |
| LongName                   | VarLenSt<br>r | Scalar |   | A complete descriptive name for the data type of this product.                                                                         |  |
| ShortName                  | VarLenSt<br>r | Scalar |   | The short name identifying the data type of this product.                                                                              |  |
| ProducerAgenc<br>y         | VarLenSt<br>r | Scalar |   | Identification of the agency that provides the project funding.                                                                        |  |
| ProducerInstitu<br>tion    | VarLenSt<br>r | Scalar |   | Identification of the institution that provides project management.                                                                    |  |
| ProductionLoca<br>tion     | VarLenSt<br>r | Scalar |   | Facility in which this file was produced.                                                                                              |  |
| ProductionLoca<br>tionCode | FixLenStr     | Scalar |   | One-letter code in filename indicating the ProductionLocation.                                                                         |  |
| ProcessingLeve<br>l        | VarLenSt<br>r | Scalar |   | Indicates data level (Level 0, Level 1A,<br>Level 1B, Level 1C, Level 2) in this product.                                              |  |
| InstrumentShor<br>tName    | VarLenSt<br>r | Scalar |   | The name of the instrument that collected the telemetry data.                                                                          |  |
| PlatformLongN<br>ame       | VarLenSt<br>r | Scalar |   | The long name of the platform hosting the instrument.                                                                                  |  |
| PlatformShortN<br>ame      | VarLenSt<br>r | Scalar |   | The short name of the platform hosting the instrument.                                                                                 |  |
| PlatformType               | VarLenSt<br>r | Scalar |   | The type of platform associated with the instrument which acquires the accompanying data.                                              |  |
| ProjectId                  | VarLenSt<br>r | Scalar |   | The project identification string.                                                                                                     |  |
| DataFormatTyp<br>e         | FixLenStr     | Scalar |   | A character string thst indentifies the internal format of the data product.                                                           |  |
| HDFVersionId               | VarLenSt<br>r | Scalar |   | A character string that identifies the version of the HDF (Hierarchical Data Format) software that was used to generate this data file |  |
| CalSmoothingH<br>alfWidth  | Float32       | Scalar | S | Calibration smoothing window half-width                                                                                                |  |

## 4.2. FrameHeader

| Name                  | Data<br>Type      | Dimensions          | Unit | Description                                                                                                                                                                                                                                                                                                                           | Minim<br>um | Maxim<br>um |
|-----------------------|-------------------|---------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| frame_time_stri<br>ng | FixLenStr<br>24   | FrameRate_A<br>rry  |      | UTC instrument packet time.                                                                                                                                                                                                                                                                                                           |             |             |
| frame_time_tai9       | Float64           | FrameRate_A<br>rray | S    | TAI93 instrument packet time.                                                                                                                                                                                                                                                                                                         |             |             |
| frame_qual_flag       | IntBitfiel<br>d16 | FrameRate_A<br>rray | none | Packet processing bit field; 0: prev pkt missing, 1: used corrected timecode, 2: post-corr timecode gap, 3: out of time order, 4: unsynced pps rollover, 6: is diag pkt, 7: is download pkt, 8: is unknown pkt, 9: no valid epr counts, 12: exceeded 2 epr rollovers, 13: encoder gap exceeds 1s, 14: rejected non-mono encoder time. |             |             |
| frame_index           | Signed16          | FrameRate_A<br>rray | none | Orbit granule frame index array for chunking realignment.                                                                                                                                                                                                                                                                             |             |             |

## 4.3. GeolocationAndFlags

| Name          | Data<br>Type | Dimensions  | Unit | Description                     | Minim<br>um | Maxim<br>um |
|---------------|--------------|-------------|------|---------------------------------|-------------|-------------|
| obs_qual_flag | IntBitfiel   | ObsRate_Arr | none | Obs quality bit field;          | 0           | 28          |
|               | d32          | ay          |      | 0: invalid time,                |             |             |
|               |              |             |      | 1: not nominal pkt,             |             |             |
|               |              |             |      | 2: bad angle time interp,       |             |             |
|               |              |             |      | 3: bad angle invalid epr index, |             |             |
|               |              |             |      | 4: bad angle any reason,        |             |             |
|               |              |             |      | 5: suspect angle (vel interp)   |             |             |
|               |              |             |      | 6: skipped cal                  |             |             |
|               |              |             |      | 7: not sci obs                  |             |             |
|               |              |             |      | 8: missing posterior cal        |             |             |
|               |              |             |      | 9: missing prior cal            |             |             |
|               |              |             |      | 10: invalid input cals          |             |             |
|               |              |             |      | 11: cal code buffer error       |             |             |
|               |              |             |      | 12: cal degraded                |             |             |
|               |              |             |      | 13: bad smoothed hk             |             |             |
|               |              |             |      | 14: degraded smoothed hk        |             |             |
|               |              |             |      | 15: failed path loss inversion  |             |             |
|               |              |             |      | 16: non-monotonic time          |             |             |
|               |              |             |      | 17: bad geo scan ang,           |             |             |
|               |              |             |      | 18: bad geo sc telem,           |             |             |
|               |              |             |      | 19: bad geo earth intersect,    |             |             |
|               |              |             |      | 20: bad geo range error,        |             |             |
|               |              |             |      | 21: failed geosat lat lon       |             |             |
|               |              |             |      | 24: RFI                         |             |             |
|               |              |             |      | 25: sup arm obstruct,           |             |             |
|               |              |             |      | 26: solar arr obstruct,         |             |             |

|                                   |            |                           |       | 27: cfov avg degraded,                                                        |      |     |
|-----------------------------------|------------|---------------------------|-------|-------------------------------------------------------------------------------|------|-----|
|                                   |            |                           |       | 28: cfov avg incomplete                                                       |      |     |
|                                   |            |                           |       |                                                                               |      |     |
| obs_index                         | Signed32   | ObsRate_Arr               | none  | Orbit granule obs index array for chunking                                    |      |     |
|                                   |            | ay                        |       | realignment.                                                                  |      |     |
| time_string                       | FixLenStr  | ObsRate_Arr               |       | UTC Earth observation time.                                                   |      |     |
| cime_string                       | i indensei | ay                        |       | ord Earth observation times                                                   |      |     |
| time_tai93                        | Float64    | ObsRate_Arr               | S     | TAI93 Earth observation time.                                                 |      |     |
|                                   |            | ay                        |       |                                                                               |      |     |
| sat_pos_eci                       | Float32    | ObsRate_Spa               | meter | Spacecraft position in the Earth Centered                                     |      |     |
|                                   |            | tial_Array                |       | Inertial (ECI) coordinates (X, Y, Z)                                          |      |     |
| sat_pos_ecr                       | Float32    | ObsRate_Spa               | meter | Spacecraft position in the Earth Centered                                     |      |     |
| sat_vel_ecr                       | Float32    | tial Array<br>ObsRate_Spa | m/s   | Rotational (ECR) coordinates (X, Y, Z) Spacecraft velocity in ECR coordinates |      |     |
| sat_ver_ecr                       | FloatS2    | tial_Array                | 111/5 | (dx/dt, dy/dt, dz/dt)                                                         |      |     |
| sat_vel_eci                       | Float32    | ObsRate_Spa               | m/s   | Spacecraft velocity in ECI coordinates                                        |      |     |
|                                   |            | tial_Array                | , -   | (dx/dt, dy/dt, dz/dt)                                                         |      |     |
| refl_borsight_ec                  | Float32    | ObsRate_Spa               |       | Reflected boresight unit vector wrt Earth                                     |      |     |
| r                                 |            | tial_Array                |       | normal, in the Earth Centered Rotational                                      |      |     |
| (1.1. · 1                         | FI (00     | Ol D · A                  |       | (ECR) coordinates (X, Y, Z).                                                  |      |     |
| refl_borsight_at<br>_geostat_dist | Float32    | ObsRate_Arr               | m     | Magnitude of reflected boresight vector extended to geostationary altitude.   |      |     |
| _geostat_dist<br>refl_borsight_at | Float32    | ay<br>ObsRate_Arr         | Deg   | Latitude of reflected boresight vector                                        | -180 | 180 |
| _geostat_lat                      | rioatsz    | ay                        | Deg   | extended to geostationary altitude.                                           | -100 | 100 |
| refl_borsight_at                  | Float32    | ObsRate_Arr               | Deg   | Longitude of reflected boresight vector                                       | -180 | 180 |
| _geostat_lon                      |            | ay                        | . 0   | extended to geostationary altitude.                                           |      |     |
| sat_lat                           | Float32    | ObsRate_Arr               | deg   | Sub-satellite latitude.                                                       | -90  | 90  |
|                                   |            | ay                        |       |                                                                               |      |     |
| sat_lon                           | Float32    | ObsRate_Arr               | deg   | Sub-satellite longitude.                                                      | -180 | 180 |
| 1-                                | El+22      | ay                        |       | Satellite altitude above Earth WGS84                                          |      |     |
| sat_alt                           | Float32    | ObsRate_Arr<br>ay         | m     | elipsoid.                                                                     |      |     |
| deploy_arm_roll                   | Float32    | ObsRate_Arr               | Deg   | Roll angle evaluated at COWVR deployment                                      | -180 | 180 |
| aopioy_arm_ron                    | 110000     | ay                        | 208   | arm (Euler order: 3,2,1).                                                     | 100  | 100 |
| deploy_arm_pit                    | Float32    | ObsRate_Arr               | Deg   | Pitch angle evaluated at COWVR                                                | -180 | 180 |
| ch                                |            | ay                        |       | deployment arm (Euler order: 3,2,1).                                          |      |     |
| deploy_arm_ya                     | Float32    | ObsRate_Arr               | Deg   | Yaw angle evaluated at COWVR deployment                                       | -180 | 180 |
| W                                 | El (22     | ay                        | 1     | arm (Euler order: 3,2,1).                                                     | 100  | 100 |
| cowvr_roll                        | Float32    | ObsRate_Arr               | deg   | COWVR roll angle (Euler order: 3,2,1).                                        | -180 | 180 |
| cowvr_pitch                       | Float32    | ay<br>ObsRate_Arr         | deg   | COWVR pitch angle (Euler order: 3,2,1).                                       | -180 | 180 |
| cowvi_pitch                       | 1100052    | ay                        | ucg   | Gow vic pitch angie (Euler order, 5,2,1).                                     | 100  | 100 |
| cowvr_yaw                         | Float32    | ObsRate_Arr               | deg   | COWVR yaw angle (Euler order: 3,2,1).                                         | -180 | 180 |
|                                   |            | ay                        |       | , o (                                                                         |      |     |
| sat_solar_zen                     | Float32    | ObsRate_Arr               | deg   | The zenith angle of the Sun from the                                          | 0    | 180 |
|                                   |            | ay                        |       | COWVR deployment arm.                                                         | _    |     |
| sat_solar_az                      | Float32    | ObsRate_Arr               | deg   | The azimuth angle of the Sun from the                                         | 0    | 360 |
| sat_lunar_zen                     | Float32    | ay<br>ObsRate_Arr         | deg   | COWVR deployment arm.  The zenith angle of the moon from the                  | 0    | 180 |
| Sat_Iulial_Zell                   | rioatsz    | ay                        | ueg   | COWVR deployment arm.                                                         | U    | 100 |
| sat_lunar_az                      | Float32    | ObsRate_Arr               | deg   | The azimuth angle of the moon from the                                        | 0    | 360 |
|                                   |            | ay                        |       | COWVR deployment arm.                                                         | _    |     |
| sat_caa                           | Float32    | ObsRate_Arr               | Deg   | The azimuth angle of the instrument                                           | 0    | 360 |
|                                   |            | ay                        |       | boresight from the COWVR deployment                                           |      |     |
| 1                                 | FI (00     | Ol P : C                  |       | arm.                                                                          |      |     |
| instr_boresight_                  | Float32    | ObsRate_Spa               | m     | Boresight unit vector (projected from                                         |      |     |
| ecr                               |            | tial_Array                |       | instrument) in the Earth Centered<br>Rotational (ECR) coordinates (X, Y, Z)   |      |     |
| instr_h_pol_ecr                   | Float32    | ObsRate_Spa               |       | H-pol unit vector in the Earth Centered                                       |      |     |
|                                   | 1.04002    | Dorate_opa                |       | For anne record in the Bartin delitered                                       |      |     |

|                          |         | tial_Array                |      | Rotational (ECR) coordinates (X, Y, Z).                                                                                                                                                  |      |     |
|--------------------------|---------|---------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| earth_norm_ecr           | Float32 | ObsRate_Spa<br>tial_Array |      | Earth normal unit vector at obs point in<br>the Earth Centered Rotational (ECR)<br>coordinates (X, Y, Z).                                                                                |      |     |
| eph_source_flag          | Signed8 | ObsRate_Arr<br>ay         | none | Ephemeris source; -1: unspecified, 0: transition, 1: gps, 2: issbad sto.                                                                                                                 | -1   | 2   |
| att_source_flag          | Signed8 | ObsRate_Arr<br>ay         | none | Attitude source; -1: unspecified, 0: transition, 1: flexcore nominal, 2: flexcore trac1 only, 3: flexcore trac2 only, 4: direct trac1, 5: direct trac2, 6: fixed tracker, 7: issbad sto. | -1   | 7   |
| obs_lat                  | Float32 | ObsRate_Arr<br>ay         | deg  | Observation latitude on Earth WGS84 ellipsoid.                                                                                                                                           | -90  | 90  |
| obs_lon                  | Float32 | ObsRate_Arr<br>ay         | deg  | Observation longitude on Earth WGS84 ellipsoid.                                                                                                                                          | -180 | 180 |
| instr_scan_ang           | Float32 | ObsRate_Arr               | deg  | Boresight scan angle in the instrument coordinate frame.                                                                                                                                 | 0    | 360 |
| sc_scan_ang              | Float32 | ObsRate_Arr<br>ay         | deg  | Boresight scan angle relative to the spacecraft velocity vector in the spacecraft coordinate frame.                                                                                      | 0    | 360 |
| earth_pol_rot            | Float32 | ObsRate_Arr               | deg  | Geometric polarization rotation angle wrt vertical at Earth observation.                                                                                                                 | 0    | 360 |
| earth_inc_ang            | Float32 | ObsRate_Arr<br>ay         | deg  | Boresight incidence angle at Earth observation                                                                                                                                           | 0    | 180 |
| earth_az_ang             | Float32 | ObsRate_Arr<br>ay         | deg  | Boresight azimuth angle at Earth observation                                                                                                                                             | 0    | 360 |
| sun_glint_ang            | Float32 | ObsRate_Arr               | deg  | Angle between specular reflection vector and vector to Sun relative to surface normal                                                                                                    | 0    | 180 |
| sc_att_flag              | Signed8 | ObsRate_Arr               | none | 0: nominal spacecraft attitude, 1: off-nominal spacecraft attitude, -1: unknown                                                                                                          | -1   | 1   |
| fore_aft_flag            | Signed8 | ObsRate_Arr               | none | 0 : observation is forward scan, 1:<br>observation is aft scan, -1: unknown                                                                                                              | -1   | 1   |
| sea_ice_flag             | Signed8 | ObsRate_Arr               | none | (Not yet implemented) 0 : no ice, 1: possible ice, 2: ice, -1: unknown                                                                                                                   | -1   | 2   |
| land_flag                | Signed8 | ObsRate_Arr               | none | 0 :ocean, 1: coast, 2: land, -1: unknown                                                                                                                                                 | -1   | 1   |
| asc_desc_flag            | Signed8 | ObsRate_Arr               | none | Satellite orbit node; 0: descending, 1: ascending, -1: unknown                                                                                                                           | -1   | 1   |
| rfi_flag                 | Signed8 | ObsRate_Arr               | none | COWVR RFI flag (0=no reflection)                                                                                                                                                         | 0    | 1   |
| solar_array_flag         | Signed8 | ObsRate_Arr               | none | COWVR solar array obstruction flag (0=unobstructed)                                                                                                                                      | 0    | 1   |
| support_arm_fl<br>ag     | Signed8 | ObsRate_Arr               | none | COWVR support arm obstruction flag (0= unobstructed)                                                                                                                                     | 0    | 1   |
| ufo_obstruction<br>_flag | Signed8 | ObsRate_Arr<br>ay         | none | (Not yet implemented in TSDR, present in EDR) COWVR unknown obstruction flag (0=unobstructed)                                                                                            | 0    | 1   |
| sun_glint_flag           | Signed8 | ObsRate_Arr               | none | COWVR sun glint flag (0=limited glint)                                                                                                                                                   | 0    | 1   |
| direct_rfi_flag          | Signed8 | ObsRate_Arr               | none | COWVR direct RFI flag (0=no reflection)                                                                                                                                                  | 0    | 1   |
| earth_tb_flag            | Signed8 | ObsRate_Arr               | none | COWVR composite flag for observed earth brightness temperature (0=good)                                                                                                                  | 0    | 1   |

| 4.4. Anci          | llary   |                                             |             |                                                                                   |   |     |
|--------------------|---------|---------------------------------------------|-------------|-----------------------------------------------------------------------------------|---|-----|
| anc_tec            | Float32 | ObsRate_Arr<br>ay                           | TEC<br>unit | Line-of-sight ancillary total electron content                                    |   |     |
| anc_mag            | Float32 | ObsRate_Spa<br>tial_Array                   | Gauss       | Ancillary magnetic field vector                                                   |   |     |
| far_rot_ang        | Float32 | ObsRate_Spe<br>ctralCh_Arra                 | deg         | Faraday rotation angle computed from ancillary TEC and magnetic field information | 0 | 360 |
| anc_sst            | Float32 | ObsRate_Arr<br>ay                           | K           | Amcillary sea surface temperature                                                 |   |     |
| anc_wind_spee<br>d | Float32 | ObsRate_Arr<br>ay                           | m/s         | Ancillary surface wind speed                                                      |   |     |
| anc_wind_dir       | Float32 | ScanAlongTr<br>ack_ScanCros<br>sTrack_Array | deg         | Ancillary wind direction relative to North                                        |   |     |

## 4.5. InstrumentTemperatures

| Name                 | Data Type      | Dimensions                      | Unit | Description                                                              | Minim<br>um | Maxim<br>um |
|----------------------|----------------|---------------------------------|------|--------------------------------------------------------------------------|-------------|-------------|
| hk_counts            | Unsigned1<br>6 | FrameRate_<br>DemuxCh_A<br>rray | none | Raw housekeeping counts after channel demuxing.                          |             |             |
| hk_counts_cal_l<br>o | Unsigned1<br>6 | FrameRate_<br>Array             | none | Calibration low reference count for demuxed housekeeping channel.        |             |             |
| hk_counts_cal_<br>hi | Unsigned1<br>6 | FrameRate_<br>Array             | none | Calibration high reference count for demuxed housekeeping channel.       |             |             |
| temp_cal_lo          | Float32        | FrameRate_<br>Array             | К    | Calibration low temperature reference for demuxed housekeeping channel.  |             |             |
| temp_cal_hi          | Float32        | FrameRate_<br>Array             | К    | Calibration high temperature reference for demuxed housekeeping channel. |             |             |
| temp_recv_34         | Float32        | FrameRate_<br>Array             | К    | Measured temperature of vPol receiver for 34 GHz detector channel.       |             |             |
| temp_recv_182        | Float32        | FrameRate_<br>Array             | К    | Measured temperature of vPol receiver for 18/23 GHz detector channels.   |             |             |
| temp_rech_34         | Float32        | FrameRate_<br>Array             | К    | Measured temperature of hPol receiver for 34 GHz detector channel.       |             |             |
| temp_rech_182        | Float32        | FrameRate_<br>Array             | К    | Measured temperature of hPol receiver for 18/23 GHz detector channel.    |             |             |
| temp_pbu2            | Float32        | FrameRate_<br>Array             | К    | Measured temperature of polarimetric backend unit #2.                    |             |             |

| temp_pbu3           | Float32 | FrameRate_<br>Array | K | Measured temperature of polarimetric backend unit #3.        |  |
|---------------------|---------|---------------------|---|--------------------------------------------------------------|--|
| temp_ns1            | Float32 | FrameRate_<br>Array | K | Measured temperature of noise source #1.                     |  |
| temp_ns2            | Float32 | FrameRate_<br>Array | K | Measured temperature of noise source #2.                     |  |
| temp_dac            | Float32 | FrameRate_<br>Array | K | Measured temperature of data acquisition controller.         |  |
| temp_pcu1           | Float32 | FrameRate_<br>Array | K | Measured temperature of power converter unit #1.             |  |
| temp_pcu2           | Float32 | FrameRate_<br>Array | K | Measured temperature of power converter unit #2.             |  |
| temp_feed_hor<br>n  | Float32 | FrameRate_<br>Array | K | Measured temperature of feed horn.                           |  |
| temp_omt_h          | Float32 | FrameRate_<br>Array | K | Measured temperature of hPol orthomode transducer.           |  |
| temp_omt_v          | Float32 | FrameRate_<br>Array | K | Measured temperature of vPol orthomode transducer.           |  |
| temp_wg_h           | Float32 | FrameRate_<br>Array | K | Measured temperature of hPol wave guide.                     |  |
| temp_wg_v           | Float32 | FrameRate_<br>Array | K | Measured temperature of vPol wave guide.                     |  |
| temp_rech_dplx<br>r | Float32 | FrameRate_<br>Array | K | Measured temperature of hPol receiver diplexer.              |  |
| temp_recv_dplx<br>r | Float32 | FrameRate_<br>Array | K | Measured temperature of vPol receiver diplexer.              |  |
| temp_nsca_h         | Float32 | FrameRate_<br>Array | K | Measured temperature of hPol noise source combiner assembly. |  |
| temp_nsca_v         | Float32 | FrameRate_<br>Array | K | Measured temperature of vPol noise source combiner assembly. |  |
| temp_coupler_<br>h  | Float32 | FrameRate_<br>Array | K | Measured temperature of hPol coupler.                        |  |
| temp_coupler_v      | Float32 | FrameRate_<br>Array | K | Measured temperature of vPol coupler.                        |  |

## 4.6. ChannelOrderedCounts

| Name        | Data Type      | Dimensions                | Unit | Description                                                                                                                   | Minim<br>um | Maxim<br>um |
|-------------|----------------|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| rcfg1       | Unsigned8      | ObsRate_Arr<br>ay         | none | Instrument radiometer configuration for current acquisition; b7: ND13; b6: ND12; b5: ND11; b4: RF1; F3: Dicke1; b0-b2: Spare. |             |             |
| rcfg2       | Unsigned8      | ObsRate_Arr<br>ay         | none | Instrument radiometer configuration for current acquisition; b7: ND13; b6: ND12; b5: ND11; b4: RF1; F3: Dicke1; b0-b2: Spare. |             |             |
| ta18_counts | Unsigned1<br>6 | ObsRate_Pol<br>Meas_Array | none | Raw detector counts per measured polarization (V, H, P, M, L, R) for 18 GHz channel.                                          | 0           | 65535       |
| ta23_counts | Unsigned1<br>6 | ObsRate_Pol<br>Meas_Array | none | Raw detector counts per measured polarization (V, H, P, M, L, R) for 23 GHz channel.                                          | 0           | 65535       |

| ta34_counts | Unsigned1 | ObsRate_Pol | none | Raw detector counts per measured           | 0 | 65535 |
|-------------|-----------|-------------|------|--------------------------------------------|---|-------|
|             | 6         | Meas_Array  |      | polarization (V, H, P, M, L, R) for 34 GHz |   |       |
|             |           |             |      | channel.                                   |   |       |

## 4.7. Calibration

| Name                      | Data Type | Dimensions                                        | Unit           | Description                                                  | Minim<br>um | Maxim<br>um |
|---------------------------|-----------|---------------------------------------------------|----------------|--------------------------------------------------------------|-------------|-------------|
| cal_accum_tim<br>e_tai93  | FixLenStr | CalAccumRat<br>e_Array                            | Float6<br>4    | TA93 time of calibration extraction.                         |             |             |
| cal_accum_tim<br>e_string | FixLenStr | CalAccumRat<br>e_Array                            | Float6<br>4    | UTC time of calibration extraction.                          |             |             |
| cal_time_string           | FixLenStr | CalRate_Arra<br>y                                 |                | UTC time of current calibration point.                       |             |             |
| cal_time_tai93            | Float64   | CalRate_Arra<br>y                                 | S              | TA93 time of current calibration point.                      |             |             |
| t_cal_matrix              | Float32   | CalRate_Spec<br>tralCh_Five_F<br>ive_Array        | K              | Intermediate 5x5 tcal matrix                                 |             |             |
| tref_stokes               | Float32   | CalAccumRat<br>e_SpectralCh<br>_Stokes_Arra<br>y  | К              | Reference stokes temperatures.                               |             |             |
| tnd1_stokes               | Float32   | CalAccumRat<br>e_SpectralCh<br>_Stokes_Arra<br>y  | К              | Effective stokes noise temperatures for source #1.           |             |             |
| tnd2_stokes               | Float32   | CalAccumRat<br>e_SpectralCh<br>_Stokes_Arra<br>y  | К              | Effective stokes noise temperatures for source #2.           |             |             |
| cal_nd1_ar_diff           | Float32   | CalAccumRat<br>e_SpectralCh<br>_PolMeas_Arr<br>ay | count<br>s     | ND1 counts deflection for (v-ant, h-ref)                     |             |             |
| cal_nd1_ra_diff           | Float32   | CalAccumRat<br>e_SpectralCh<br>_PolMeas_Arr<br>ay | count<br>s     | ND1 counts deflection for (v-ref, h-ant)                     |             |             |
| cal_nd1_aa_diff           | Float32   | CalAccumRat<br>e_SpectralCh<br>_PolMeas_Arr<br>ay | count<br>s     | ND1 counts deflection for (v-ant, h-ant)                     |             |             |
| cal_nd2_aa_diff           | Float32   | CalAccumRat<br>e_SpectralCh<br>_PolMeas_Arr<br>ay | count<br>s     | ND2 counts deflection for (v-ant, h-ant)                     |             |             |
| cal_rr_count              | Float32   | CalAccumRat<br>e_SpectralCh<br>_PolMeas_Arr<br>ay | count<br>s     | Counts for (v-ref, h-ref).                                   |             |             |
| gain_mag_v                | Float64   | CalRate_Spec<br>tralCh_Array                      | count<br>s / K | Gain magnitude scale factor on vPol elements of gain matrix. |             |             |

| gain_mag_h                 | Float64           | CalRate_Spec                                        | 1 / K            | Gain magnitude scale factor on hPol                                                                                                                                                                                                                           |  |
|----------------------------|-------------------|-----------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| gg                         | 1100001           | tralCh_Array                                        | 2 / 11           | elements of gain matrix.                                                                                                                                                                                                                                      |  |
| gain_mag_v_s<br>moothed    | Float64           | CalRate x<br>SpectralCh                             | count<br>s / K   | Gain magnitude for vPol at calibration time after weighted smoothing across multiple calibrations.                                                                                                                                                            |  |
| gain_mag_h_s<br>moothed    | Float64           | CalRate_Spec<br>tralCh_Array                        | count<br>s / K   | Gain magnitude for hPol at calibration time after weighted smoothing across multiple calibrations.                                                                                                                                                            |  |
| gain                       | Float64           | CalRate_Spec<br>tralCh_PolMe<br>as_Stokes_Ar<br>ray | count<br>s / K   | Derived 6x4 gain matrix that relates 6-<br>element counts vector to 4-element TA<br>vector.                                                                                                                                                                   |  |
| gain_smoothe<br>d          | Float64           | CalRate_Spec<br>tralCh_PolMe<br>as_Stokes_Ar<br>ray | count<br>s / K   | Gain matrix at calibration time after weighted smoothing across multiple calibrations.                                                                                                                                                                        |  |
| inv_gain                   | Float64           | CalRate_Spec<br>tralCh_Stoke<br>s_PolMeas_Ar<br>ray | К                | Inverse of 6x4 gain matrix (currently computed as diagnostic).                                                                                                                                                                                                |  |
| inv_gain_smoo<br>thed      | Float64           | CalRate_Spec<br>tralCh_Stoke<br>s_PolMeas_Ar<br>ray | K/<br>count<br>s | Inverse of smoothed gain matrix.                                                                                                                                                                                                                              |  |
| offset                     | Float64           | CalRate_Spec<br>tralCh_PolMe<br>as_Array            | count<br>s       | Derived 6-element gain offset vector.                                                                                                                                                                                                                         |  |
| offset_smooth<br>ed        | Float64           | CalRate_Spec<br>tralCh_PolMe<br>as_Array            | count<br>s       | Gain offset at calibration time after weighted smoothing across multiple calibrations.                                                                                                                                                                        |  |
| cal_qual_flag              | IntBitfield<br>16 | CalRate_Spec<br>tralCh_Array                        | none             | Calibration quality bit field; 0: invalid ns mask, 1: bad temps, 2: failed precond, 3: offset invalid, 4: gain invalid, 5: rev gain invalid, 6: outside cal smoothing window, 7: incomplete smoothed hk, 8: incomplete smoothed cal hk, 15: unexpected error. |  |
| cal_smoothed_<br>qual_flag | IntBitfield<br>16 | CalRate_Spec<br>tralCh_Array                        | count            | Calibration quality bit field; 0: invalid ns mask, 1: bad temps, 2: failed precond, 3: offset invalid, 4: gain invalid, 5: rev gain invalid, 6: outside cal smoothing window, 7: incomplete smoothed hk, 8: incomplete smoothed cal hk, 15: unexpected error. |  |
| ensemble_cal_<br>qual_flag | IntBitField<br>16 | CalRate_Arra<br>y                                   | count<br>s       | Calibration quality bit field; 0: invalid ns mask, 1: bad temps, 2: failed precond, 3: offset invalid, 4: gain invalid, 5: rev gain invalid,                                                                                                                  |  |

|  | 6 (11 1 (11 1.1                  |  |
|--|----------------------------------|--|
|  | 6: outside cal smoothing window, |  |
|  | 7: incomplete smoothed hk,       |  |
|  | 8: incomplete smoothed cal hk,   |  |
|  | 15: unexpected error.            |  |

## 4.8. CalibratedSceneTemperatures

| Name            | Data Type | Dimensions  | Unit | Description                                | Minim<br>um | Maxim<br>um |
|-----------------|-----------|-------------|------|--------------------------------------------|-------------|-------------|
| ta18_internal   | Float32   | ObsRate_Sto | К    | Derived 18 GHz stokes antenna              |             |             |
| _               |           | kes_Array   |      | temperature at internal calibration plane. |             |             |
| ta23_internal   | Float32   | ObsRate_Sto | K    | Derived 23 GHz stokes antenna              |             |             |
|                 |           | kes_Array   |      | temperature at internal calibration plane. |             |             |
| ta34_internal   | Float32   | ObsRate_Sto | К    | Derived 34 GHz stokes antenna              |             |             |
| tao i_mtermar   | 1104102   | kes_Array   | **   | temperature at internal calibration plane. |             |             |
| ta18            | Float32   | ObsRate_Sto | K    | Derived 18 GHz stokes antenna              |             |             |
| uio             | 1100132   | kes_Array   | 1    | temperature at feedhorn.                   |             |             |
| ta23            | Float32   | ObsRate_Sto | K    | Derived 23 GHz stokes antenna              |             |             |
| tazs            | FloatS2   | kes_Array   | IX.  | temperature at feedhorn.                   |             |             |
| ta34            | Float32   | ObsRate_Sto | К    | Derived 34 GHz stokes antenna              |             |             |
| 1434            | rivatsz   | kes_Array   | K    | temperature at feedhorn.                   |             |             |
| th10 conth      | Elect22   |             | К    | Derived 18 GHz stokes antenna              |             |             |
| tb18_earth      | Float32   | ObsRate_Sto | K    |                                            |             |             |
|                 |           | kes_Array   |      | temperature integrated over the visible    |             |             |
| .1.22 .1        | El .00    | Ol D . C.   | 17   | Earth                                      |             |             |
| tb23_earth      | Float32   | ObsRate_Sto | K    | Derived 23 GHz stokes antenna              |             |             |
|                 |           | kes_Array   |      | temperature integrated over the visible    |             |             |
| .1.0.4          | FI .00    | 01 D : 0:   | **   | Earth                                      |             |             |
| tb34_earth      | Float32   | ObsRate_Sto | K    | Derived 34 GHz stokes antenna              |             |             |
|                 |           | kes_Array   |      | temperature integrated over the visible    |             |             |
|                 |           |             |      | Earth.                                     |             |             |
| tb18_ifov_if    | Float32   | ObsRate_Sto | K    | Derived 18 GHz stokes brightness           |             |             |
|                 |           | kes_Array   |      | temperature at the instantaneous field of  |             |             |
|                 |           |             |      | view (instrument polarization frame).      |             |             |
| tb23_ifov_if    | Float32   | ObsRate_Sto | K    | Derived 23 GHz stokes brightness           |             |             |
|                 |           | kes_Array   |      | temperature at the instantaneous field of  |             |             |
|                 |           |             |      | view (instrument polarization frame).      |             |             |
| tb34_ifov_if    | Float32   | ObsRate_Sto | K    | Derived 34 GHz stokes brightness           |             |             |
|                 |           | kes_Array   |      | temperature at the instantaneous field of  |             |             |
|                 |           |             |      | view (instrument polarization frame).      |             |             |
| tb18_ifov_pre_c | Float32   | ObsRate_Sto | K    | Derived 18 GHz stokes brightness           |             |             |
| orrect          |           | kes_Array   |      | temperature, instantaneous field of view   |             |             |
|                 |           |             |      | before bias correction.                    |             |             |
| tb23_ifov_pre_c | Float32   | ObsRate_Sto | K    | Derived 23 GHz stokes brightness           |             |             |
| orrect          |           | kes_Array   |      | temperature, instantaneous field of view   |             |             |
|                 |           |             |      | before bias correction.                    |             |             |
| tb34_ifov_pre_c | Float32   | ObsRate_Sto | K    | Derived 34 GHz stokes brightness           |             |             |
| orrect          |           | kes_Array   |      | temperature, instantaneous field of view   |             |             |
|                 |           |             |      | before bias correction.                    |             |             |
| tb18_ifov       | Float32   | ObsRate_Sto | K    | Derived 18 GHz stokes brightness           |             |             |
| _               |           | kes_Array   |      | temperature at the instantaneous field of  |             |             |
|                 |           | ,           |      | view (Earth polarization frame).           |             |             |
| tb23_ifov       | Float32   | ObsRate_Sto | К    | Derived 23 GHz stokes brightness           |             |             |
|                 |           | kes_Array   |      | temperature at the instantaneous field of  |             |             |
|                 |           |             |      | view (Earth polarization frame).           |             |             |
| tb34_ifov       | Float32   | ObsRate_Sto | K    | Derived 34 GHz stokes brightness           |             |             |
| 223 1_110 V     | 1104102   | kes_Array   | 1.   | temperature at the instantaneous field of  |             |             |
|                 |           | 11C5_111 ay |      | lemperature at the motantaneous neid of    |             |             |

|                             |               |                          |   | view (Earth polarization frame).                                                                        |  |
|-----------------------------|---------------|--------------------------|---|---------------------------------------------------------------------------------------------------------|--|
| tb18_cfov                   | Float32       | ObsRate_Sto<br>kes_Array | K | Derived 18 GHz stokes brightness temperature at the composite field of view (Earth polarization frame). |  |
| tb23_cfov                   | Float32       | ObsRate_Sto<br>kes_Array | К | Derived 23 GHz stokes brightness temperature at the composite field of view (Earth polarization frame). |  |
| tb34_cfov                   | Float32       | ObsRate_Sto<br>kes_Array | К | Derived 34 GHz stokes brightness temperature at the composite field of view (Earth polarization frame). |  |
| tb18_stdev                  | Float32       | ObsRate_Sto<br>kes_Array | К | Spatial variance of 18 GHz Stokes brightness temperature (Earth polarization frame).                    |  |
| tb23_stdev                  | Float32       | ObsRate_Sto<br>kes_Array | К | Spatial variance of 23 GHz Stokes brightness temperature (Earth polarization frame).                    |  |
| tb34_stdev                  | Float32       | ObsRate_Sto<br>kes_Array | К | Spatial variance of 34 GHz Stokes brightness temperature (Earth polarization frame).                    |  |
| tb18_cfov_perc_<br>bad      | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible<br>neighboring IFOV omitted due to flagged<br>or missing data              |  |
| tb18_cfov_perc_<br>degraded | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible neighboring IFOV with degraded quality                                     |  |
| tb23_cfov_perc_<br>bad      | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible<br>neighboring IFOV omitted due to flagged<br>or missing data              |  |
| tb23_cfov_perc_<br>degraded | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible neighboring IFOV with degraded quality                                     |  |
| tb34_cfov_perc_<br>bad      | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible<br>neighboring IFOV omitted due to flagged<br>or missing data              |  |
| tb34_cfov_perc_<br>degraded | Unsigned<br>8 | ObsRate_Arr<br>ay        |   | Weighted percent of possible neighboring IFOV with degraded quality                                     |  |

## **5** Resampled Ancillary Product (Intermediate)

The AncResamp intermediate product contains 3 groups described below:

- Metadata: contains top level information about the file contents
- **Geolocation**: provides geolocation and geometric information for spacecraft and each COWVR observation
- Ancillary: provides additional information such as meteorological data needed for calculations.

| Name                         | Data<br>Type  | Dimensions | Unit  | Description                                                                                                                                                          | Minim<br>um | Maxim<br>um |
|------------------------------|---------------|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| InputPointer                 | VarLenSt<br>r | InputPtr   |       | A pointer to one or more data granules that provide the major input that was used to generate this product.                                                          |             |             |
| AncillaryDataD<br>escriptors | VarLenSt<br>r | AncFile    |       | The file names of the ancillary data files that were used to generate this product (ancillary data sets include all input files except for the primary input files). |             |             |
| CollectionLabel              | VarLenSt<br>r | Scalar     |       | Label of the data collection containing this product.                                                                                                                |             |             |
| SizeMBECSData<br>Granule     | Float32       | Scalar     | Mbyte | The size of this data granule in megabytes.                                                                                                                          |             |             |
| RangeBeginnin<br>gDate       | FixLenStr     | Scalar     |       | The date on which the earliest data contained in the product were acquired (yyyy-mm-dd).                                                                             |             |             |
| RangeEndingDa<br>te          | FixLenStr     | Scalar     |       | The date on which the latest data contained in the product were acquired (yyyy-mm-dd).                                                                               |             |             |
| RangeBeginnin<br>gTime       | FixLenStr     | Scalar     |       | The time at which the earliest data contained in the product were acquired (hh:mm:ss.mmmZ).                                                                          |             |             |
| RangeEndingTi<br>me          | FixLenStr     | Scalar     |       | The time at which the latest data contained in the product were acquired (hh:mm:ss.mmmZ).                                                                            |             |             |
| ProductionDate<br>Time       | FixLenStr     | Scalar     |       | The date and time at which the product was created (yyyy-mm-ddThh:mm:ss.mmmZ).                                                                                       |             |             |
| SISName                      | VarLenSt<br>r | Scalar     |       | The name of the document describing the contents of the product.                                                                                                     |             |             |
| SISVersion                   | VarLenSt<br>r | Scalar     |       | The version of the document describing the contents of the product.                                                                                                  |             |             |
| BuildId                      | VarLenSt<br>r | Scalar     |       | The ID of build that included the software that created this product.                                                                                                |             |             |

| GranuleNumber              | Singed32      | Scalar | Granule counter for the mission                                                                                                        |
|----------------------------|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|
|                            |               |        |                                                                                                                                        |
| ChunkNumber                | Singed16      | Scalar | A chunk counter used when the granule is subdivided for processing                                                                     |
| QAGranulePoin<br>ter       | VarLenSt<br>r | Scalar | A pointer to the quality assessment product that was generated with this product.                                                      |
| GranulePointer             | VarLenSt<br>r | Scalar | The filename of this product.                                                                                                          |
| LongName                   | VarLenSt<br>r | Scalar | A complete descriptive name for the data type of this product.                                                                         |
| ShortName                  | VarLenSt<br>r | Scalar | The short name identifying the data type of this product.                                                                              |
| ProducerAgenc<br>y         | VarLenSt<br>r | Scalar | Identification of the agency that provides the project funding.                                                                        |
| ProducerInstitu<br>tion    | VarLenSt<br>r | Scalar | Identification of the institution that provides project management.                                                                    |
| ProductionLoca<br>tion     | VarLenSt<br>r | Scalar | Facility in which this file was produced.                                                                                              |
| ProductionLoca<br>tionCode | FixLenStr     | Scalar | One-letter code in filename indicating the ProductionLocation.                                                                         |
| ProcessingLeve<br>l        | VarLenSt<br>r | Scalar | Indicates data level (Level 0, Level 1A,<br>Level 1B, Level 1C, Level 2) in this product.                                              |
| InstrumentShor<br>tName    | VarLenSt<br>r | Scalar | The name of the instrument that collected the telemetry data.                                                                          |
| PlatformLongN<br>ame       | VarLenSt<br>r | Scalar | The long name of the platform hosting the instrument.                                                                                  |
| PlatformShortN<br>ame      | VarLenSt<br>r | Scalar | The short name of the platform hosting the instrument.                                                                                 |
| PlatformType               | VarLenSt<br>r | Scalar | The type of platform associated with the instrument which acquires the accompanying data.                                              |
| ProjectId                  | VarLenSt<br>r | Scalar | The project identification string.                                                                                                     |
| DataFormatTyp<br>e         | FixLenStr     | Scalar | A character string thst indentifies the internal format of the data product.                                                           |
| HDFVersionId               | VarLenSt<br>r | Scalar | A character string that identifies the version of the HDF (Hierarchical Data Format) software that was used to generate this data file |

| Name          | Data<br>Type      | Dimensions        | Unit | Description                                                                                                                                                                                                                                                  | Minim<br>um | Maxim<br>um |
|---------------|-------------------|-------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| obs_index     | Signed32          | ObsRate_Arr<br>ay | none | Orbit granule obs index array for chunking realignment.                                                                                                                                                                                                      |             |             |
| time_string   | FixLenStr         | ObsRate_Arr<br>ay |      | UTC Earth observation time.                                                                                                                                                                                                                                  |             |             |
| time_tai93    | Float64           | ObsRate_Arr<br>ay | S    | TAI93 Earth observation time.                                                                                                                                                                                                                                |             |             |
| obs_qual_flag | IntBitfiel<br>d32 | ObsRate_Arr<br>ay | none | Obs quality bit field; 0: prev pkt missing, 1: not nominal pkt, 2: bad angle time interp, 3: bad angle invalid index, 4: suspect angle non-adj indices, 17: bad geo no scan ang, 18: bad geo sc telem, 19: bad geo earth intersect, 20: bad geo range error, |             |             |
| obs_lat       | Float32           | ObsRate_Arr<br>ay | deg  | Observation latitude on Earth WGS84 ellipsoid.                                                                                                                                                                                                               | -90         | 90          |
| obs_lon       | Float32           | ObsRate_Arr<br>ay | deg  | Observation longitude on Earth WGS84 ellipsoid.                                                                                                                                                                                                              | -180        | 180         |

| 5.3. Ancillary Parameters |         |                                             |             |                                                |   |   |
|---------------------------|---------|---------------------------------------------|-------------|------------------------------------------------|---|---|
| anc_tec                   | Float32 | ObsRate_Arr<br>ay                           | TEC<br>unit | Line-of-sight ancillary total electron content |   |   |
| anc_mag                   | Float32 | ObsRate_Spa<br>tial_Array                   | Gauss       | Ancillary magnetic field vector                |   |   |
| Beam_land_frac            | Float32 | ObsRate_Spe<br>ctralCh_Arra                 |             | Fraction of land in antenna main beam          | 0 | 1 |
| anc_sst                   | Float32 | ObsRate_Arr<br>ay                           | К           | Amcillary sea surface temperature              |   |   |
| anc_wind_spee<br>d        | Float32 | ObsRate_Arr<br>ay                           | m/s         | Ancillary wind speed                           |   |   |
| anc_wind_dir              | Float32 | ScanAlongTr<br>ack_ScanCros<br>sTrack_Array | deg         | Ancillary wind direction relative to N         |   |   |

## **6 Data Product Names**

#### 6.1. Product types and names

#### NOAA names for COWR data products:

RDR is Raw Data Record

TSDR is Temperature Sensor Data Record for sensor brightness temperature

EDR in Environmental Data Record (COWVR only)

#### NASA/JPL names for COWVR data products:

L0 extracts raw telemetry to H5 (note time-ordering for us is done upstream).

L1a applies DN-to-EU conversion on housekeeping, also geolocates science observations.

L1b applies calibration to the raw sensor counts to radiances (brightness temperatures).

L1c uses the scan geometry to resample the radiance to what Shannon calls cumulative FOV.

L2 retrieves the geophysical variables, such as wind speeds.

L1c is not an official NASA level, but missions sometimes use this to label processing needed between L1b (calibration) and L2.

There a mapping between the NOAA names and the NASA/JPL names is

RDR = L0

TSDR = L1c

EDR = L2

Our order of processing is mapped into separate executables for convenience. Not all the steps need to result in granules for data archive/distribution (or vise-versa).

For the processing of pre-launch ground test data, most data can only be processed through L1a, and a limited set can be processed through L1b. None can go further for the pre-launch ground test data.

## 6.2. File Naming Format

Two types of naming formats are used, one for the telemetry data downloaded from the ISS

through the HOSC, and the product files generated in the GDPS.

### 6.2.1. Telemetry file name format

Telemetry file names will take the form:

APID(apid)\_SEQ(SSSSS)\_StartDateTime(YYYYMMDDThhmmss)\_FulfilledDateTime(YYYYMMDDThhmmss)\_Duration(mmm)\_Location(C).ext

#### where:

apid - the 4 digit APID of the telemetry data (see section 6)

- the granule ID of the product. It is generated from a sequence number calculated from the number of hours since the launch of the COWVR instrument

YYYYMMDDThhmmss - The year, month, date, hour, minute, second of the starting time of the requested data, with a "T" separator between the date and time.

mmm - Duration of the requested data in minutes

C - Location code that the data came from:

S: Simulated

H: HOSC low (2 hour) latency data

N: HOSC nominal (24 hour) latency data

J: JPL

L: Legacy files

P: Production

T: Test

ext - file extension:

pkt: Instrument packets

met: Metadata file describing packet file

XFR: Transfer notification file containing file name and md5sum of packet file

h5: HDF-5 file format

#### 6.2.2. Science Data Products

 $inst\_typ.GID(SSSSS).StartDateTime(YYYYMMDDThhmmss).EndDateTime(YYYYMMDDThhmmss).EndDateTime(YYYYMMDDThhmmss).ext\\$ 

#### where:

inst - Instrument: COWVR, TEMPEST

typ - Data type: RDR, L1A, L1B, GAIN, ANE, GEO, ANC, L1C, TSDR, EDR

GID - Granule ID; number of hours since defined epoch 2022-01-01

StartDateTime - Requested starting date and time of data

EndDateTime - Requested ending data and time of data

cv - Collection label (currently "v2")

All other fields same as in 8.2.1

## 7 Acknowledgement

The work to prepare this document was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work was funded by United States Space Force (USSF), Space Systems Command, Development Corps for Innovation and Prototyping (SSC/DCI) as part of the SSC Space Test Program - Houston 8 (STP-H8) technology demonstration mission.