

Algorithm Theoretical Basis Documents (ATBDs) provide the physical and mathematical descriptions of the algorithms used in the generation of science data products. The ATBDs include a description of variance and uncertainty estimates and considerations of calibration and validation, exception control and diagnostics. Internal and external data flows are also described.

SP
SPACEPHYSICS RESEARCH LABORATORY

Algorithm Theoretical Basis Document Level 3 Merged Storm	UM Doc. No.	148-0412
	SwRI Doc. No.	N/A
	Revision	5
	Date	22 Feb 2024
	Contract	NNL13AQ00C

Prepared by: April Warnock, Mohammad Al-Khaldi,
2/22/2024 Anthony Russel, Chris Ruf

Darren McKague, CYGNSS UM Project Manager

Approved by:

Approved by:

Date: 2/22/2024

Date: 22 Feb 2024
Chris Ruf, CYGNSS Principal Investigator

REVISION NOTICE

Revision	Document Revision History	
Date	$11 / 12 / 2023$	n / a
Initial Release	$12 / 19 / 2023$	Updates made to Table 1 and Figure 5 caption.
R2	$2 / 12 / 2024$	Updates to Section 2.2
R3	$2 / 15 / 2024$	Updating the FDS re-gridding method and longitudinal range
R4	$2 / 22 / 2024$	Updating to include information about 'time_offset'
R5		

ATBD Level 3 Merged Storm
UM: 148-0412

Table of Contents

1. SUMMARY 1
1.1 INTRODUCTION AND BACKGROUND 1
1.1.1 The CYGNSS mission 1
1.1.2 Science Goals, Objectives and Requirements 2
2. ALGORITHM OVERVIEW 3
2.1 Algorithm Objectives 3
2.2 Input Data Description 4
2.3 Merging Algorithm Description 4
2.4 CYGNSS 34-Knot Wind Radii Product Algorithm. 5
2.5 DATASET EXAMPLES 10
2.6 OUTPut Data Product Description 13
3. REFERENCES 14

ATBD Level 3 Merged Storm

1. Summary

This document describes the algorithm and data processing implementation used to produce CYGNSS Level 3 Merged Storm (MRG) wind speed science data products. In contrast to the standard L3 gridded wind speed product, the L3 MRG windspeed product combines CYGNSS Storm-Centric Gridded (SCG) wind speed products (Mayers, 2021), which are derived from the L2 Young Seas Limited Fetch (YSLF) wind speeds for a region surrounding a given tropical cyclone, with Level 3 CYGNSS Fully Developed Seas (FDS) wind speeds far from the TC center (Ruf, 2021). The algorithm transitions from 100% L3 SCG wind speeds to 100% L3 FDS wind speeds, via a tapered weighted averaging scheme, over a radial distance defined by the storm's size. A 50/50 weighting between L3 SCG and FDS winds occurs at approximately the 34 knot wind radius (R_{34}). The algorithm produces global ($+/-40^{\circ}$ latitude) windspeeds, averaged over a $+/-6$ hour window, and reported on a $0.1 \times 0.1^{\circ}$ grid. Gridded wind speeds are reported every 6 hours for each tropical cyclone, although some 6-hourly increments may be missing if there are an insufficient number of overpasses available during that time interval. The files are output on a storm-by-storm basis.

1.1 Introduction and Background

1.1.1 The CYGNSS mission

The CYGNSS constellation is comprised of 8 observatories (7 operational as of 27 Nov 2022), roughly evenly spaced about a common orbit plane at $\sim 520 \mathrm{~km}$ altitude and 35° inclination angle. Each observatory contains a Delay Doppler Mapping Instrument (DDMI) which consists of a multi-channel GNSS-R receiver, a low gain zenith antenna for reception of the direct signals, and two high gain nadir antennas for reception of the surface scattered signals (Rose et al., 2013). There are typically many specular reflections from the surface available at any given time due to the large number of GPS transmitting satellites. Each DDMI selects the four specular reflections located in the highest sensitivity region of its nadir antenna pattern and simultaneously computes DDMs centered on each of them. Individual DDM integration times last one second and wind speeds are derived from measurements over a $25 \times 25 \mathrm{~km}^{2}$ region centered on the specular point (Clarizia and Ruf, 2016). This results in a total of 32 wind measurements per second by the full constellation. CYGNSS spatial sampling consists of 32 simultaneous single pixel "swaths" that are 25 km wide and, typically, 100 s of km long, as the specular points move across the surface due to orbital motion by CYGNSS and the GPS satellites. Temporal sampling occurs randomly due to the asynchronous nature of the CYGNSS and GPS satellite orbits. As a result, the CYGNSS revisit time is best described by its probability distribution. The distribution, shown in Fig 1, is derived empirically using a mission simulator to determine the time and location of each sample within the $\pm 38^{\circ}$ latitude coverage zone and then examining the time difference between samples at the same location.

Fig. 1. Temporal sampling is characterized by the probability and cumulative density functions of revisit time. The median and mean revisit times are, respectively, 2.8 and 7.2 hours.

The empirical distribution features a high probability of very short revisit times (e.g. resulting from sequential samples by trailing satellites spaced tens of minutes apart) and a long, tapering "tail" at higher revisit times. Its median value is 2.8 hours and the mean revisit time is 7.2 hours.
CYGNSS combines the all-weather performance of GPS based bistatic scatterometry with the spatial and temporal sampling properties of a constellation of observatories. The GPS frequency of operation enables the instrument to make surface scattering observations through most precipitating conditions. This provides the ability to measure the ocean surface winds with high temporal resolution and spatial coverage under all precipitating conditions, up to and including those experienced in the hurricane eyewall. The 8 microsatellites were launched on a single Deployment Module that is attached to a NASA government furnished equipment Pegasus launch vehicle (Ruf et al., 2016).

1.1.2 Science Goals, Objectives and Requirements

The CYGNSS goal is to understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of TCs. The goal of CYGNSS directly supports the NASA strategic objective to enable improved predictive capability for weather and extreme weather events. Near-surface winds are major contributors to and indicators of momentum and energy fluxes at the air/sea interface. Understanding the coupling between the surface winds and the moist atmosphere within the TC inner core is key to properly modeling and forecasting its genesis and intensification. Of particular interest is the lack of significant improvement in storm intensity forecasts over the past two decades, relative to forecasts of storm track. Advances in track forecast have resulted in large part from the improvements that have been made in observations and modeling of the mesoscale and synoptic environment surrounding a TC. The CYGNSS team hypothesizes that the lack of an accompanying improvement in intensity forecasting is largely due to a lack of observations and proper modeling of the TC inner core. The inadequacy in observations results from two causes:

- Much of the inner core ocean surface is obscured from conventional remote sensing
instruments by intense precipitation in the eye wall and inner rain bands.
- The rapidly evolving genesis and intensification stages of the TC life cycle are poorly sampled by conventional polar-orbiting, wide-swath imagers.

The CYGNSS science goals are enabled by meeting the following mission objectives.

- Measure ocean surface wind speed in most naturally occurring precipitating conditions, including those experienced in the tropical cyclone eyewall.
- Measure ocean surface wind speed in the tropical cyclone inner core with sufficient frequency to resolve genesis and rapid intensification.

The CYGNSS baseline science requirements have been met (Ruf et al., 2019) and are summarized here:

1) The baseline science mission shall provide estimates of ocean surface wind speed over a dynamic range of 3 to $70 \mathrm{~m} / \mathrm{s}$ as determined by a spatially averaged wind field with resolution of $5 \times 5 \mathrm{~km}$.
2) The baseline science mission shall provide estimates of ocean surface wind speed during precipitation rates up through 100 millimeters per hour as determined by a spatially averaged rain field with resolution of $5 \times 5 \mathrm{~km}$.
3) The baseline science mission shall retrieve ocean surface wind speed with a retrieval uncertainty of $2 \mathrm{~m} / \mathrm{s}$ or 10%, whichever is greater, with a spatial resolution of $25 \times 25 \mathrm{~km}$.
4) The baseline science mission shall collect space-based measurements of ocean surface wind speed at all times during the science mission with the following temporal and spatial sampling: 1) temporal sampling better than 12 hour mean revisit time; and 2) spatial sampling 70% of all storm tracks between 35 degrees north and 35 degrees south latitude to be sampled within 24 hours.
5) The CYGNSS project shall conduct a calibration and validation program to verify data delivered meets the requirements within individual wind speed bins above and below $20 \mathrm{~m} / \mathrm{s}$.
6) Support the operational hurricane forecast community assessment of CYGNSS data in retrospective studies of new data sources.

2. Algorithm Overview

2.1 Algorithm Objectives

The objective of this algorithm is to produce regular 6-hourly gridded wind speeds for TCs over both the inner core region of the storm and across the wider surrounding area. Inner core winds are drawn from the existing CYGNSS L3 Storm-Centric Gridded (SCG) wind speed product (Mayer, 2021). L3 SCG winds are derived from the CYGNSS L2 Young Seas Limited Fetch wind speed product, which is optimized for performance in high wind conditions and adds storm-centric regridding and improved quality control. Winds away from the storm are drawn from the CYGNSS L3 gridded Fully Developed Seas (FDS) product (Ruf, 2021). L3 FDS winds are optimized for
performance globally assuming a fully developed sea state. The two products are merged over a transition zone between these two regions using a radially tapered averaging scheme over an annular region centered on the storm center and extending across the 34 knot wind radius. This merged wind speed product (L3 MRG) provides improved spatial coverage compared to the L3 SCG wind speed, and improved retrieval performance in the storm's inner core compared to the L3 FDS gridded wind speed. The inclusion of L3 FDS winds allows for global coverage in place of the more limited $7.2 \times 7.2^{\circ}$ moving grid employed by the L3 SCG algorithm. In addition to the CYGNSS merged wind speeds, the L3 MRG product includes 34-knot wind radii estimated in each quadrant from the L3 MRG wind fields.

2.2 Input Data Description

The input data required by this algorithm are listed here.

1. Wind speed inputs are v3.2 L3 SCG and v3.2 L3 Gridded FDS winds.
2. Best Track storm center locations are from the Joint Typhoon Warning Center (JTWC 2024a, JTWC 2024b, JTWC 2024c) and the National Hurricane Center (Landsea \& Franklin, 2013).

2.3 Merging Algorithm Description

The L3 FDS wind speed product is defined on a $0.2 \times 0.2^{\circ}$ grid, whereas the L3 SCG product uses a $0.1 \times 0.1^{\circ}$ grid. In order to merge the two windspeed products on a common grid, the L3 FDS product is bilinearly interpolated to a $0.1 \times 0.1^{\circ}$ grid. If the FDS wind speeds from all four surrounding points are not valid, only the valid ones will be utilized for the interpolation. L3 FDS products are generated at 1 hour intervals, whereas the L3 SCG product is generated every 6 hours. The L3 MRG product is also generated every 6 hours, so it uses the corresponding L3 SCG product directly. The L3 FDS wind field that is used in the merging algorithm is a composite of the L3 FDS products generated over a $+/-6$ hour interval centered on each L3 MRG reporting time. L3 FDS samples are added to the composite grid beginning with the samples furthest in time from the center of the 12 -hour time interval. If a sample is available at a closer time to the center of the 12 hour interval, it replaces any sample in the same grid cell from a more distant time relative to the reporting time. This composite approach is used: a) to provide a more fully populated L3 FDS grid for the L3 MRG algorithm; and b) have the reported winds be as close as possible to the center of the time interval. The offset in time of each L3 MRG sample derived from the L3 FDS product, relative to the center of the 12 -hour time interval, is reported in the data file as the variable time_offset. For cases where there are FDS samples at the same time before and after the L3 MRG time, the FDS sample before the sample will be used. Time offsets for L3 MRG samples derived from the L3 SCG product are reported as zero.
The algorithm used to merge L3 SCG and FDS winds is defined with respect to three nested regions. The inner region corresponds to the inner core of the tropical cyclone. The outer region corresponds to distances far from the storm. A transition region lies in between the inner and outer regions. The borders of the three regions are defined by the radial distance from the storm center, as determined by the Best Track storm center location at the center time of the 12 hr time interval over which a particular L3 MRG product is generated. The radial distance from the storm center to the boundary of the inner core, $R_{\text {inner }}$, is given by

$$
R_{\text {inner }}=\left\{\begin{array}{ll}
R 25 \mathrm{~ms} & \text { if } V_{\max } \geq 25 \mathrm{~m} / \mathrm{s} \tag{1}\\
R_{\max }-50 \mathrm{~km} & \text { if } V_{\max }<25 \mathrm{~m} / \mathrm{s}
\end{array}\right\}
$$

where $R 25 \mathrm{~ms}$ is the minimum radial distance from the storm center outside of which all L3 SCG wind speeds are less than $25 \mathrm{~m} / \mathrm{s}, V_{\max }$ is the maximum L3 SCG wind speed, and $R_{\max }$ is the minimum radial distance from the storm center to the boundary of the $7.2 \times 7.2^{\circ} \mathrm{L} 3 \mathrm{SCG}$ domain.
The radial distance $R_{\text {outer }}$ is defined as the maximum distance from Vmax in the L3 SCG grid, less 50 km :

$$
\begin{equation*}
R_{\text {outer }}=\max \left(\mathrm{R}\left(\mathrm{u}_{\mathrm{SCG}}\right)\right)-50 \mathrm{~km} \tag{2}
\end{equation*}
$$

The merging algorithm produces a merged wind speed, $u_{M R G}$, from the L3 SCG and FDS wind speeds, $u_{S C G}$ and $u_{F D S}$, according to

$$
u_{M R G}=\left\{\begin{array}{cl}
u_{S C G} & \text { if } r \leq R_{\text {inner }} \tag{3}\\
(1-a) u_{S C G}+a u_{F D S} & \text { if } R_{\text {inner }}<r<R_{\text {outer }} \\
u_{F D S} & \text { if } r \geq R_{\text {outer }}
\end{array}\right\}
$$

where r is the radial distance from the storm center to the sample and $a=\left(r-R_{\min }\right) /\left(R_{\text {max }}-R_{\text {min }}\right)$. Each L3 MRG wind speed is accompanied by its corresponding uncertainty value, $\sigma_{M R G}$, as defined by

$$
\sigma_{M R G}=\left\{\begin{array}{cl}
\sigma_{S C G} & \text { if } r \leq R_{\text {inner }} \tag{4}\\
\sqrt{(1-a)^{2} \sigma_{S C G}^{2}+a^{2} \sigma_{F D S}^{2}} & \text { if } R_{\text {inner }}<r<R_{\text {outer }} \\
\sigma_{F D S} & \text { if } r \geq R_{\text {outer }}
\end{array}\right\}
$$

where $\sigma_{S C G}$ and $\sigma_{F D S}$ are, respectively, the uncertainties of the SCG and FDS samples used.

2.4 CYGNSS 34-Knot Wind Radii Product Algorithm

Quadrant specific $34 \mathrm{kt}(\sim 17.5 \mathrm{~m} / \mathrm{s}$) wind radii (R 34) are estimated directly from reported CYGNSS L3 MRG wind fields $u_{M R G}(\varphi, \theta)$ given an estimate of the storm center at latitudes φ_{S} and longitudes θ_{s}. An example is shown using the CYGNSS L3 MRG wind field depicted in Figure 2 for TC Calvinia (2020). To facilitate an R34 retrieval, the wind field is projected onto an equivalent polar co-ordinate system $u_{M R G}(\Phi, d)$ as a function of azimuth (Φ) and radial distance (d) centered about an estimate of the storm's center using precomputed masks, examples of which are depicted in Figure 3. The radial window extends 1000 km away from the storm center.

Fig. 2. Example CYGNSS L3 MRG wind field from TC Calvinia, Jan 1, $20200600 Z$.

Fig. 3. Masks used for azimuthal integration of L3 CYGNSS wind fields (a) azimuth relative to storm center; (b) radial distance relative to storm center.

The wind field is azimuthally (Φ) integrated over the Northeast (NE), Southeast (SE), Southwest (SW) and Northwest (NW) quadrants using eqns. (5)-(8) respectively, collapsing the twodimensional wind field into a radial profile.

$$
\begin{align*}
& u_{M R G}^{N E}(d)=\frac{1}{N_{\Phi}(d)} \sum_{\Phi=0}^{\Phi=\pi / 2} u_{M R G}(\Phi, d) \tag{5}\\
& u_{M R G}^{S E}(d)=\frac{1}{N_{\Phi}(d)} \sum_{\Phi=3 \pi / 2}^{\Phi=2 \pi} u_{M R G}(\Phi, d) \tag{6}
\end{align*}
$$

$$
\begin{equation*}
u_{M R G}^{S W}(d)=\frac{1}{N_{\Phi}(d)} \sum_{\phi=\pi}^{\Phi=3 \pi / 2} u_{M R G}(\Phi, d) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
u_{M R G}^{N W}(d)=\frac{1}{N_{\Phi}(d)} \sum_{\Phi=\pi / 2}^{\Phi=\pi} u_{M R G}(\Phi, d) \tag{8}
\end{equation*}
$$

where N_{Φ} is the total number of samples at radial distance d in each quadrant. Examples of the resulting radial profiles for the wind field shown in Figure 2 are depicted in Figure 4.

Fig. 4. Azimuthally integrated radial wind profiles. Red horizontal line indicates $34 \mathrm{kt}(\sim 17.5 \mathrm{~m} / \mathrm{s}$) point, blue vertical line indicates retrieved R34 value obtained using eqn. 9. (a) Northwest; (b) Northeast; (c) Southwest; (d) Southeast.

Subsequently, $R 34^{Q}$ is estimated using eqn. (9) for every quadrant.

$$
\begin{equation*}
R 34^{Q}=\underset{d *}{\operatorname{argmin}}\left|u_{M R G}^{Q}(d)-34\right| \tag{9}
\end{equation*}
$$

ATBD Level 3 Merged Storm

Using a multi-year CYGNSS L3 MRG data record, comparisons relative to HWRF datasets suggest that retrieval performance is improved through the introduction of a quadrant specific debiasing term, summarized in Table I. The debiasing factors are applied to the radii obtained by eqn (9).

Table 1

QUADRANT SPECIFIC DEBIASING TERMS

Quadrant	Debiasing Factor (km)
NE	71.6
SE	54.7
SW	36.8
NW	44.6

$\begin{array}{ccccc}\text { TD } & \text { Cat. } 1 & \text { Cat. } 2 & \text { Cat. } 3 & \text { Cat. } 4 \\ \text { Storm Level of Development } 5\end{array}$

Fig. 5. R34 retrieval comparisons to HWRF using a CYGNSS data record spanning 436 storms. Storm intensity indicated by color. Storm quadrant indicated by marker symbol. Correlation estimated to be $\sim 70 \%$.

2.5 Dataset Examples

Examples of the L3 MRG data product wind fields are shown in Figures 6-8 for single times during Hurricane Calvin (2023), Hurricane Don (2023), and Hurricane Frederick (2023). Figure 6 demonstrates a case where coverage of the TC is sparse, but peak winds are captured. Figure 7 shows a wind field from Hurricane Don that is partially cut off by exceeding the northern limit of CYGNSS' latitude range but is otherwise well sampled. Figure 8 shows a wind field from Hurricane Don, where the effects of the L3 SCG Quality Control filter can be seen in the removal of winds in the NW quadrant. Figure 9 shows a subset of consecutive wind fields from Hurricane Franklin covering a period of rapid intensification to demonstrate the frequent revisit capability of the CYGNSS constellation.

Fig. 6. Example L3 MRG wind field from Hurricane Calvin at reporting time July 16, 2023 1800Z. Left: Wind field in the vicinity of the of the TC (corresponding to red box on the right figure); right: full L3 MRG wind field.

ATBD Level 3 Merged Storm
UM: 148-0412
SwRI: N/A
Rev 5
Page 11

Fig. 7. Example L3 MRG wind field from Hurricane Don at reporting time July 21, $20230600 Z$. Left: Wind field in the vicinity of the of the TC (corresponding to red box on the right figure); right: full L3 MRG wind field.

Fig. 8. Example L3 MRG wind field from Hurricane Franklin at reporting time Aug 30, 2023 0600Z. Left: full L3 MRG wind field; right: wind field in the vicinity of the of the TC (corresponding to red box on the left figure).

ATBD Level 3 Merged Storm

Fig. 9. Selected time series of L3 MRG wind fields in the vicinity of Hurricane Franklin.

2.6 Output Data Product Description

The L3 MRG wind speeds are calculated over 12 -hour windows on a $0.1 \times 0.1^{\circ}$ resolution spatial grid. The timestamp coordinate is defined at the center of each 12 -hour window and is incremented by 6 hours. Latitude and longitude coordinates are defined at the center of each $0.1 \times 0.1^{\circ}$ spatial bin. The latitude and longitude ranges of this L3 product are $39.9^{\circ} \mathrm{N}-39.9^{\circ} \mathrm{S}$ and $0.0^{\circ} \mathrm{E}-359.9^{\circ} \mathrm{E}$ degrees, respectively.

The key output data fields produced are:
$u_{M R G}$: The merged wind speed, as given by eqn. (3) (units of m / s)
$\sigma_{M R G}$: The uncertainty in $u_{M R G}$ for a particular sample, as given by eqn. (4) (units of m / s)
R34 ${ }^{\mathrm{NE}}, \mathrm{R} 34^{\mathrm{SE}}, \mathrm{R} 34^{\mathrm{SW}}, \mathrm{R} 34^{\mathrm{NW}}$: CYGNSS 34-knot wind radii calculated according to eqn. (9) and output for each storm quadrant.
This product also contains ancillary storm-specific fields that are independent of the CYGNSS data, including the best track reported latitude and longitude, storm status, maximum sustained wind speed ($V_{\max }$), and 34-knot wind radii for each storm quadrant. These values are derived from beta-track reports for the intermediate latency product version, and final best track reported values for the archival version.

In addition to a wind speed reported at each spatiotemporal bin over the lifetime of a TC, the L3 MRG algorithm outputs the latitude and longitude of the maximum wind speed in the L3 MRG wind field at each timestamp, the time offset in hours relative to the reporting time for each of the wind speed samples, and the associated quality flags at each timestep.

A full list of the data fields is provided in the Appendix.

ATBD Level 3 Merged Storm

3. References

Clarizia, M. P., and C. S. Ruf, 2016, "Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission," IEEE Trans Geosci. Remote Sens., 54(8), doi:10.1109/TGRS.2016.2541343.

Joint Typhoon Warning Center, 2024a. "Western North Pacific Ocean Best Track Data,", distributed by the Joint Typhoon Warning Center. https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific

Joint Typhoon Warning Center, 2024b. "North Indian Ocean Best Track Data,", distributed by the Joint Typhoon Warning Center. https://www.metoc.navy.mil/jtwc/jtwc.html?north-indianocean

Joint Typhoon Warning Center, 2024c. "Southern Hemisphere Best Track Data,", distributed by the Joint Typhoon Warning Center. https://www.metoc.navy.mil/jtwc/jtwc.html?southernhemisphere

Landsea, C. W., and J. L. Franklin, 2013, "Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format," Mon. Wea. Rev., 141, 3576-3592, https://doi.org/10.1175/MWR-D-12-00254.1.

Mayers, D., 2021, Level 3 Storm-Centric Gridded Wind Speed. CYGNSS Algorithm Theoretical Basis Document. UM Doc. No. 148-0400, Rev 1, 3 Mar 2021.

Rose, R., C. Ruf, D. Rose, M. Brummitt, A., Ridley, 2013, "The CYGNSS Flight Segment; A Major NASA Science Mission Enabled by Micro-Satellite Technology," Proc. 2013 IEEE Aerospace Conf., Big Sky, MT., 1-13, doi: 10.1109/AERO.2013.6497205.
Ruf, C. S., R. Atlas, P. S. Chang, M. P. Clarizia, J. L. Garrison, S. Gleason, S. J. Katzberg, Z. Jelenak, J. T. Johnson, S. J. Majumdar, A. O'Brien, D. J. Posselt, A. J. Ridley, R. J. Rose, V. U. Zavorotny, 2016, "New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection," Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00218.1.
Ruf, C. S., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, D. Waliser, 2019, "In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites," Bull. Amer. Meteor. Soc., 2009-2023, doi: 10.1175/BAMS-D-18-0337.1.
Ruf, C., 2021, Level 3 Gridded Wind Speed. CYGNSS Algorithm Theoretical Basis Document. UM Doc. No. 148-0319, Rev 2, 13 Oct 2021.

Warnock, A. M., "CYGNSS Level 3 Merged Wind Data Product for Storm Force and Surrounding Environmental Wind Speeds," JSTARS, in review.

Appendix. L3 MRG Data Dictionary

Acronyms and Abbreviations					
ISO: International Organization for Standardization					
JTWC: Join Typhoon Warning Center					
L2: Level 2					
L3: Level 3					
NHC: National Hurricane Center					
UTC: Coordinated Universal Time					
YSLF: Young Seas, Limited Fetch					
Name	Long Name	netCDF Type	CF Conventions Units	netCDF Dimensions	Comment
Global Attributes					
13_merged_algorithm_version	<none>	file attribute, string	<none>	<none>	L3 merged processing algorithm version number.
source	<none>	file attribute, string	<none>	<none>	Level 3 netCDF source file names.
storm_name	<none>	file attribute, string	<none>	<none>	Name of storm
geospatial_min_lat	<none>	file attribute, string	<none>	<none>	Minimum latitude of the grid that bounds the whole storm's path.
geospatial_max_lat	<none>	file attribute, string	<none>	<none>	Maximum latitude of the grid that bounds the whole storm's path.
geospatial_min_lon	<none>	file attribute, string	<none>	<none>	Minimum longitude of the grid that bounds the whole storm's path.
geospatial_max_lon	<none>	file attribute, string	<none>	<none>	Maximum longitude of the grid that bounds the whole storm's path.

Page 16

ATBD Level 3 Merged Storm
UM: 148-0412
SwRI: N/A
Rev 5
Page 17

		Time Cepoch_time Centering of Data Based on Epoch Reference		int	

best_track_storm_center_lon	Storm center longitude	float	degrees_east	time	Longitude coordinate of the storm center at the given time as reported by the (NHC/JTWC)'s Best Track data product.
best_track_storm_status	Storm status	byte	1	time	The level of storm development as reported by the (NHC/JTWC)'s Best Track data product: 0 = tropical depression 1 = tropical storm 2 = typhoon 3 = super typhoon 4 = tropical cyclone 5 = hurricane 6 = subtropical depression 7 = subtropical storm 8 = extratropical systems 9 = monsoon depression 10 = inland 11 = dissipating 12 = low 13 = tropical wave 14 = extrapolated 15 = unknown 16 = disturbance $17=$ error
best_track_vmax	Maximum sustained wind speed	int	m s-1	time	Maximum sustained wind speed in meters per seconds as reported by the (NHC/JTWC)'s Best Track data product.

Page 19

best_track_r34_ne	Radial extent of 34 knot winds in north east from Best Track	int	km	time	In the north east quadrant, how far from the storm center do 34 knot winds exist as reported by the (NHC/JTWC)'s Best Track data product.
best_track_r34_nw	Radial extent of 34 knot winds in north west from Best Track	int	km	time	In the north west quadrant, how far from the storm center do 34 knot winds exist as reported by the (NHC/JTWC)'s Best Track data product.
best_track_r34_sw	Radial extent of 34 knot winds in south west from Best Track	int	km	time	In the south west quadrant, how far from the storm center do 34 knot winds exist as reported by the (NHC/JTWC)'s Best Track data product.
best_track_r34_se	Radial extent of 34 knot winds in south east from Best Track	int	km	time	In the south east quadrant, how far from the storm center do 34 knot winds exist as reported by the (NHC/JTWC)'s Best Track data product.
cygnss_vmax_lat	Storm V max latitude	float	degrees_north	time	Estimate of the latitude coordinate of the maximum storm velocity made from the CYGNSS wind speeds.

ATBD Level 3 Merged Storm
UM: 148-0412
SwRI: N/A
Rev 5
Page 20

cygnss_vmax_lon	Storm V max longitude	float	degrees_east	time	Estimate of the longitude coordinate of the maximum storm velocity made from the CYGNSS wind speeds.
cygnss_r34_ne	Radial extent of 34 knot winds in north east from CYGNSS	int	km	time	CYGNSS derived 34 knot wind radii in the north east quadrant.
cygnss_r34_nw	Radial extent of 34 knot winds in north west from CYGNSS	int	km	time	CYGNSS derived 34 knot wind radii in the north west quadrant.
cygnss_r34_sw	Radial extent of 34 knot winds in south west from CYGNSS	int	km	time	CYGNSS derived 34 knot wind radii in the south west quadrant.
cygnss_r34_se	Radial extent of 34 knot winds in south east from CYGNSS	int	km	time	CYGNSS derived 34 knot wind radii in the south east quadrant.
quality_flags	Per-time step quality flags	int	1	time	The per-time step quality flags. 1 indicates presence of condition. Flag bit masks: $1 / 0 \times 00000001(\text { Bit 01 })=$ poor_overall_quality. This flag is allocated for potential future flags. There are currently no fatal flags.

ATBD Level 3 Merged Storm

UM: 148-0412

SwRI: N/A
Rev 5
Page 22

