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Abstract Recent advances in processing data from the Gravity Recovery and Climate Experiment
(GRACE) have led to a new generation of gravity solutions constrained within a Bayesian framework to
remove correlated errors rather than relying on empirical filters. The JPL RL05M mascon solution is one such
solution, solving for mass variations using spherical cap mass concentration elements (mascons), while rely-
ing on external information provided by near-global geophysical models to constrain the solution. This new
gravity solution is fundamentally different than the traditional spherical harmonic gravity solution, and as
such, requires different care when postprocessing. Here we discuss two classes of postprocessing consider-
ations for the JPL RL05M GRACE mascon solution: (1) reducing leakage errors across land/ocean boundaries,
and (2) scaling the solutions to account for leakage errors introduced through parameterizing the gravity
solution in terms of mascons. A Coastline Resolution Improvement (CRI) filter is developed to reduce leak-
age errors across coastlines. Synthetic simulations reveal a reduction in leakage errors of �50%, such that
residual leakage errors are �1 cm equivalent water height (EWH) averaged globally. A set of gain factors is
derived to reduce leakage errors for continental hydrology applications. The combined effect of the CRI fil-
ter coupled with application of the gain factors, is shown to reduce leakage errors when determining the
mass balance of large (>160,000 km2) hydrological basins from 11% to 30% (0.6–1.5 mm EWH) averaged
globally, with local improvements up to 38%–81% (9–19 mm EWH).

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) has been mapping the spatiotemporal changes of the
Earth’s surface mass distribution since its launch in 2002 [Tapley et al., 2004a]. This unique data set has allowed
for quantification of previously unknown geophysical processes such as continental rates of ice mass changes
in Greenland and Antarctica [Luthcke et al., 2013; Shepherd et al., 2012; Velicogna, 2009], rates of groundwater
depletion in water-stressed regions across the globe [Richey et al., 2015; Famiglietti et al., 2011; Rodell et al.,
2009], unraveling terms in the sea level budget [Reager et al., 2016; Llovel et al., 2014; Boening et al., 2012] and
temporal changes in ocean circulation [Landerer et al., 2015]. While GRACE data have proven to be invaluable
in understanding and addressing a diverse range of Earth system science related questions, one of the largest
shortcomings with the data is the presence of correlated error that manifests itself as North-South stripes due
to poor observability of the East-West component of the gravity gradient. Many filters exist to remove this cor-
related error [Duan et al., 2009] (most of which are empirical by nature), the most common of which includes
a form of destriping [Swenson and Wahr, 2006], and smoothing [Wahr et al., 1998]. While these filters are typi-
cally successful in removing the correlated error, they have also been shown to remove real geophysical sig-
nals from the data which mimic the North-South striping pattern of the error. To compensate for this, a global
set of gain factors (limited to continental hydrology applications) has been developed [Landerer and Swenson,
2012] to restore signal amplitudes which were removed in the filtering process. However, these gain factors
can potentially introduce biases in frequency bands outside the annual component, in particular for longer-
term trends. In those cases, kernel-specific gain factors are necessary [Landerer and Swenson, 2012].

As an alternative to empirical postprocessing filters for removing correlated errors, the gravity solution can be
conditioned in such a way that the correlated error is suppressed during the data inversion, effectively eliminat-
ing the need for postprocessing. This solution strategy has the unique advantage of allowing the filter to simul-
taneously adjust all estimated parameters, including not only the basis functions which define the Earth’s
gravity field, but also the satellite state, accelerometer biases and scale factors, as well as any additional nui-
sance parameters. Several groups have attempted this, both with spherical harmonic basis functions [Bruinsma
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et al., 2010; Save et al., 2012], as well as mascon basis functions [Luthcke et al., 2013; Watkins et al., 2015]. Using
mascon basis functions arguably provides a more convenient architecture in which the regularization matrix
can be derived, since mascon basis functions are local, rather than global, by nature. This manuscript is focused
on the newly released JPL RL05M GRACE mascon solution [Wiese et al., 2015], which is unique in that it uses a
near-global set of geophysical models coupled with ancillary remote sensing observations to condition the
solution within a Bayesian framework with the purpose of suppressing correlated error during the gravity inver-
sion [Watkins et al., 2015]. The solution is expressed in terms of 4551 equal-area 38 spherical cap mass concen-
tration elements (mascons). This solution has been shown to have distinct advantages over traditional
spherical harmonic gravity solutions, including better spatial resolution and more optimal removal of correlated
error, in particular for ocean applications [Watkins et al., 2015; Landerer et al., 2015].

While the JPL RL05M mascon solution does not require postprocessing to remove correlated error, we
describe in the following two unique postprocessing algorithms that can be applied to the solution to
improve local estimates of mass flux by reducing leakage errors intrinsic to the mascon basis functions. Both
postprocessing procedures are unique to the JPL RL05M mascon solution and are not directly applicable to
other GRACE mascon solutions. The reason for this is that JPL RL05M is currently the only available mascon
solution that parameterizes the gravity field in terms of equal-area 38 spherical cap mascons. Other available
mascon solutions parameterize the gravity field in terms of a finite spherical harmonic expansion of 18 mascon
elements [Luthcke et al., 2013]. Theoretically, the postprocessing algorithms we derive are applicable to mas-
con elements of any size; however, considering the native GRACE spatial resolution of �300 km, 18 mascon
solutions will have leakage errors that are fundamentally different than those considered here.

This paper is organized in the following manner. First, we describe an algorithm termed the Coastline Reso-
lution Improvement (CRI) filter, which reduces leakage errors across land/ocean boundaries (section 2.1).
Second, we describe a global set of gain factors for continental hydrology applications which are derived to
compensate for the averaging of the 38 spherical cap mass elements (section 2.2). Finally, a synthetic simu-
lation is performed and the performance of both postprocessing algorithms is quantified (section 3). A CRI-
filtered version of the JPL RL05M solution along with the derived gain factors can be found on the GRACE
Tellus website (www.grace.jpl.nasa.gov) [Wiese et al., 2015].

2. Methods

Two distinct postprocessing algorithms are derived which allow for improved spatial resolution of mass flux
signals in the JPL RL05M mascon solution via a reduction of leakage errors. Each algorithm is described in
this section.

2.1. Reducing Leakage Errors Across Coastlines
The JPL RL05M mascon solution solves for monthly gravity anomalies in terms of 4551 equal-area 38 spheri-
cal cap mascons, the geophysical placement of which is seen in Figure 1. Note that even though the basis

Figure 1. Definition of land, ocean, and land/ocean (L/O) mascons in the JPL RL05M solution.
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function consists of spherical caps, each mascon element is represented graphically in Figure 1 as a quadri-
lateral in order to remove gaps between each spherical cap mascon. The mass within each spherical cap is
distributed over the larger area encompassed by the bounding quadrilateral in a mass conserving manner,
as discussed in Watkins et al. [2015]. Each individual mascon is classified as either ‘‘land,’’ ‘‘ocean,’’ or ‘‘land/
ocean (L/O)’’; 751 of the 4551 mascons are classified as L/O mascons, representing approximately 17% of
the population. Here we derive an algorithm to discriminate between the ‘‘land’’ and ‘‘ocean’’ mass portions
of each L/O mascon in an attempt to reduce leakage errors across coastlines. This Coastline Resolution
Improvement (CRI) correction ultimately allows users to apply an exact averaging kernel when calculating
mass flux in hydrological basins near continental boundaries.

The CRI filter is implemented by solving the observation equation

HT AT 5HLAL1HOAO; (1)

where HT is the observed total water column height of a specific L/O mascon, and HL and HO represent the
parameters we wish to solve for: the water column height of the land and ocean portions of the L/O mas-
con, respectively. Furthermore, AT represents the total area of the L/O mascon while AL and AO represent
the area of the land and ocean portions, respectively. Equation (1) effectively represents volume conserva-
tion within a single mascon.

Equation (1) represents an underdetermined system as the number of unknowns (HL and HO) exceeds the
number of observations (HT). Therefore, we supplement the system with external a priori information, and
solve using batch weighted least squares [Tapley et al., 2004b], formulated in equation (2).

ðHT WH1�P21
o Þx̂ o5HT Wy1�P21

o �x o (2)

In equation (2), H is a matrix of partial derivatives relating the observations (y) to the state parameters (x̂ o),
W is a weighting factor on the observation, and �x o is an a priori estimate of the state while �P o contains vari-
ance information for �x o.

This problem is relatively straightforward, and we further specify

x̂ o5
HL

HO

 !
; �x o5

�x L

�x O

 !
; �Po5

r2
L 0

0 r2
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 !
; y5HT ; W5

1
r2

obs

(3)

Here �x L and �x O are the a priori estimates for HL and HO, respectively, while rL and rO represent a priori vari-
ance information for �x L and �x O. robs represents uncertainty information on the observation, HT, and is speci-
fied to be small to force mass conservation during the estimation process.

The critical step in this process is selecting reasonable values for �x L; �x O;rL, and rO. For a given mascon i, �x i
L

is chosen such that it is the average water column height (area weighted) of all nearby ‘‘land’’ mascons
(from j51 . . .NL) within a radius D of the L/O mascon in question (equation (4)). Similarly, �x i

O is chosen such
that it is the average water column height (area weighted) of all nearby ‘‘ocean’’ mascons (from k51 . . .NO)
within a radius D of the mascon (equation (5)). We have empirically chosen D 5 640 km; this value allows
for only nearby mascons to affect the calculation of �x L and �x O. Several values of D were tested, and we
found results to not be overly sensitive to this choice; this is expected so long as there is consistency in the
calculation of �x L; �x O;rL, and rO.

�x i
L5
XNL

j51

Hj
LAj

LPNL
j51 Aj

L

�����
D5640 km

(4)

�x i
O5
XNO

k51

Hk
OAk

OPNO
k51 Ak

O

�����
D5640 km

(5)

The uncertainties on the a priori estimates for a given mascon i (ri
L and ri

O) are then calculated using a time
series (from t51 . . .Nt) of both the Global Land Data Assimilation System (GLDAS) land surface hydrology
model NOAH [Rodell et al., 2004] and the Estimating the Circulation and Climate of the Ocean, Phase 2
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(ECCO2) ocean model [Menemenlis et al., 2008], both represented at 18 spatial resolution. For example, to
calculate ri

L, we first average the GLDAS model into equal-area 38 mascons consistent with the mascon
placement seen in Figure 1. We then calculate the water column height of the land portion of the L/O mas-
con in question (x̂ GLDAS

L ; this is equivalent to HL in equation (3)), and compare this with the average water
column height of adjacent land mascons (�x GLDAS

L ) within a radius D, calculated using equation (4). The RMS
difference of these two time series (equation (6)) then provides model-derived statistical uncertainty infor-
mation consistent with the calculation of �x i

L in equation (4). The same process is used to calculate ri
O, only

the ECCO2 model is used instead of the GLDAS model (equation (7)).

ri
L5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
t51 ðx̂

GLDAS
L 2�x GLDAS

L Þ2

Nt

s
(6)

ri
O5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
t51 ðx̂

ECCO2
O 2�x ECCO2

O Þ2

Nt

s
(7)

This process allows us to provide reasonable a priori estimates for the ‘‘land’’ and ‘‘ocean’’ portions of each
L/O mascon globally (equations (4) and (5)) along with model-based statistical variance information on
these a priori estimates (equations (6) and (7)), enabling the solution of equation (2). While this process is
relatively straightforward, there are a number of issues which require detailed attention. These are
addressed in the following subsections.
2.1.1. Solid Earth Mass Changes
The CRI filter is designed to accommodate changes in water mass; thus, the effect of solid Earth mass
changes must first be removed from the GRACE data prior to implementation. Two such processes which
must be accounted for are glacial isostatic adjustment (GIA) and earthquakes. GIA is removed using the
model by A et al. [2013]; this choice was made to ensure consistency with global gridded data products
derived from spherical harmonic solutions currently available on the GRACE Tellus website (www.grace.
jpl.nasa.gov). Using a different GIA model can change the estimate of water mass for select L/O mascons,
which will subsequently change the separation of mass performed by the CRI filter. The GIA sensitivities
are well documented, with the greatest uncertainty being in Antarctica [Shepherd et al., 2012].

Earthquake models provided by Han et al. [2013] are used to identify mascons that are affected by the
coseismic response of the three large earthquakes that have occurred during the GRACE record: the 2004
Sumatra-Andaman earthquake, the 2010 Maule, Chile earthquake, and the 2011 Tohoku-Oki earthquake.
Since no comprehensive model is currently available to correct for postseismic relaxation of these earth-
quakes, we only implement the CRI filter for earthquake-affected mascons prior to the epoch of the earth-
quake, since any separation of mass after the earthquake would be plagued by uncertainty in the solid
Earth postseismic response which we currently cannot account for. These mascons represent a very small
fraction of the total percentage of all L/O mascons.
2.1.2. Ice-Covered Regions
Ice sheet models are undergoing rapid development, but are currently still limited in reproducing accurate
mass changes over the Greenland and Antarctic ice sheets (primarily due to difficulties in modeling ice
dynamics). Therefore, these models are likely too uncertain to derive rL for these regions. We know, however,
that mass fluxes along the coastlines of Greenland and Antarctica (due to glacial dynamics primarily) are
larger than neighboring ocean dynamic signals [Chambers, 2009]. Thus, it is desirable in these regions to
empirically set rL large relative to rO. This effectively constrains the estimate of HO to be equal to �x O,
and the residual mass within the mascon to being placed on the ice sheet. Similarly, this is also done for
land-based glaciers with observed large mass trends (i.e., Alaska, Patagonia, Baffin Island, Ellesmere Island,
Iceland, and Svalbard).
2.1.3. Iteration
Not all L/O mascons have adjacent ‘‘land’’ and ‘‘ocean’’ mascons that can be used to calculate �x L; �x O, rL, and
rO. In many instances, the only adjacent mascons (within a radius D 5 640 km) are also L/O mascons. In
those cases, we invoke an iterative scheme where on the first iteration, only mascons with adjacent ‘‘land’’
and ‘‘ocean’’ mascons are corrected. In all, 52% of the L/O mascons are corrected on this first iteration. On
the second iteration, we use the calculated values of HL and HO from the first iteration to subsequently

Water Resources Research 10.1002/2016WR019344

WIESE ET AL. GRACE JPL RL05M LEAKAGE ERROR REDUCTION 4

http://www.grace.jpl.nasa.gov
http://www.grace.jpl.nasa.gov


calculate �x L; �x O, rL, and rO for any
remaining L/O mascons. After the sec-
ond iteration, 79% of all L/O mascons
have been corrected. This process
repeats until all L/O mascons have
been corrected, which for the current
mascon grid requires six iterations.
The corrections for mascons that
require a greater number of iterations
(see Figure 2) likely have higher
uncertainties, as errors propagate and
accumulate in the iterations. For
example, the mass balance for the

Black Sea or Red Sea (where mascons require a large number of iterations) will have additional uncertainty
in the estimates.

2.2. Improving Estimates of Mass Flux at Sub-mascon Resolution
Unconstrained spherical harmonic GRACE solutions require postprocessing filters (typically destriping
[Swenson and Wahr, 2006] and/or Gaussian smoothing [Wahr et al., 1998]) to remove correlated errors and
reveal geophysical signals. These filters have proven effective in removing correlated North-South errors in
the gravity solutions; however, they also have the undesirable effect of removing real geophysical signal,
particularly when it is oriented in the North-South direction. This signal can be largely restored through the
application of gridded gain factors [Landerer and Swenson, 2012]. These gain factors are derived by imple-
menting the GRACE postprocessing filters on synthetic model data, and performing a least squares fit
between the original and postprocessed synthetic data. This provides a direct scaling proportional to the
amount of signal damping which is inflicted by the postprocessing procedures. While the gain factors have
proven to be effective, they have some regional and time scale dependent limitations, and can be limited
in their application to long-term groundwater changes [Landerer and Swenson, 2012].

The concept of applying gain factors to the data is now extended to the JPL RL05M mascon solution. Solv-
ing for gravity anomalies in terms of equal-area 38 spherical cap mascons acts as an inherent smoothing
function on the true gravity signal, damping power at spatial scales smaller than about 38 (Figure 3). We
derive a set of global gain factors for continental hydrology applications to restore this power at short wave-
lengths. This is performed using a similar technique as outlined in Landerer and Swenson [2012], by first
mascon averaging (i.e., performing an area-weighted averaging of mass within the boundaries of each mas-
con) a land surface hydrology model (we use the Community Land Model (CLM) [Lawrence et al., 2011] at

18 3 18 resolution) with mascon place-
ments matching the JPL RL05M solution,
and then performing a least squares fit
between the original model values and
the mascon-averaged representation of
the model. Since mascon boundaries lie
on parallels of 0.58, the CLM model is first
downsampled to 0:5�30:5� prior to per-
forming the least squares fit. This results
in a global set of 0:5�30:5� gain factors
for continental hydrology applications
which redistributes mass within each 38

mascon according to spatial distribution
of mass (primarily dominated by the
annual cycle) in the land surface hydrolo-
gy model. Similar to the CRI filter, applica-
tion of the gain factors directly enables
users to apply exact averaging kernels
(neglecting the geophysical placement of

Figure 2. Number of iterations required for the CRI filter.
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mascon boundaries) when analyzing mass flux in hydrological basins, effectively reducing leakage errors
introduced by the mascon basis function. However, as in Landerer and Swenson [2012], we emphasize that
this downscaling does not imply that mass changes at the gain-factor resolution are now independently
resolved. Rather, all sub-mascon grid points are still correlated (i.e., no phase changes introduced), though
amplitudes can vary.

The resulting map of gain factors is shown in Figure 4, and is compared with gain factors derived for the
spherical harmonic solutions as described in Landerer and Swenson [2012]. The mascon gain factors are larg-
est in regions with large spatial gradients in mass distribution at short length scales, such as along coast-
lines and in High Mountain Asia. Notably, the gain factors for the mascons are significantly smaller and
closer to 1 than for the harmonic solutions. This indicates that the final mass flux solutions are less sensitive
to the derived gain factor. A gain factor closer to unity also reduces the potential for biasing long-term sig-
nals in cases where the gain factors are mostly driven by annual signals.

The gain factors must be applied after the implementation of the CRI-filter, not before. Additionally, we
note that the gain factors should not be used in regions where the CLM model is unreliable or incomplete
(i.e., ice mass variations which are poorly modeled in CLM, or near inland seas). In this analysis, gain factors
are not computed over ice-covered regions, primarily because accurate models depicting estimates of ice
mass balance (including surface mass balance processes coupled with ice dynamics) still lack maturity. Fur-
thermore, gain factors over the ocean are not considered as monthly ocean bottom pressure variations,
especially in the deeper ocean, are mostly characterized by length scales larger than 500–1000 km on
monthly and longer time scales [Chambers and Bonin, 2012].

Figure 4. Gain factors for (top) spherical harmonics solutions based on destriping, smoothing at 300 km, and truncation at spherical har-
monic degree 60, and (bottom) JPL RL05M mascon solutions based on 38 mascon averaging. The inset histogram shows the distribution of
gain factors for each approach.
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3. Synthetic Simulation and Results

To quantify the performance of the CRI filter in reducing leakage errors across land/ocean boundaries along
with the utility of the application of hydrology gain factors, we create a synthetic simulation. Global monthly
surface mass variations are created by adding together the CLM (Lawrence et al., 2011) (hydrology) and OMCT
(Dobslaw et al., 2013) (ocean) models from January 2005 to December 2009 at 1�31� resolution. Additionally,
over Greenland and Antarctica, we add the ice component of the European Space Agency (ESA) Earth System
Model (ESMice) [Dobslaw et al., 2015], which uses two configurations of the Regional Atmospheric Climate
Model (RACMO) [Ettema et al., 2009] to model surface mass balance processes while simultaneously account-
ing for secular trends due to ice dynamics in locations where observed surface velocities exceed 50 m/yr. We
use a 1�31� gridded representation of monthly averages of a spherical harmonic expansion to degree and
order 180 of ESMice. ESMice is available for 1996–2006; hence, we use January 2002 to December 2006 in our
simulation, adding it to CLM and OMCT from January 2005 to December 2009. The discrepancy in timeframe
between the models should have negligible impact on the results of the simulation, as the parameterization
of the CRI filter is self-contained to strictly land or ocean regions, and does not rely on coupling between the
two. Note that glaciers not on Greenland or Antarctica are excluded from the composite model, as they are
not modeled in CLM, and not fully represented in ESMice. This composite model (GLDAS 1 OMCT 1 ESMice) is
then mascon averaged to emulate the spatial sampling of the JPL RL05M GRACE solution. We then apply the
CRI filter to the composite model to separate land and ocean mass from mascons that span coastlines. Since
the a priori variance information in the CRI filter is derived from the GLDAS (hydrology) and ECCO2 (ocean)
models (ref equations (6) and (7)), the parameterization of the CRI filter is sufficiently independent of the syn-
thetic simulation (in the sense that different forward models are employed). We do note, however, that using
CLM instead of GLDAS in equation (6) to parameterize the CRI filter does not change the results substantially,
as the relative ratio of ri

L to ri
O is fairly constant independent of which land surface hydrology model is used.

Figure 5 shows the magnitude of the monthly error RMS over all L/O mascons separately for regions with and
without ice, for both ocean leakage errors (i.e., errors over the ocean) and land leakage errors (i.e., errors over the
land). The relative magnitude of ocean and land leakage errors is primarily a function of how the mascon place-
ment conforms to the coastline (i.e., whether there are more ocean or land pixels within each L/O mascon). The
magnitude of the monthly leakage error is typically between 1.5 and 2 cm equivalent water height (EWH) for
non-ice-covered regions, and reaches up to 10 cm EWH for ice-covered regions. After the CRI filter is imple-
mented, the leakage error is reduced to around 1 cm EWH in most months for non-ice-covered regions, and
between 1 and 2 cm EWH for ice-covered regions. It is also interesting to note that the error after implementing
the CRI filter scales proportionally to the magnitude of the original error; Figure 5 shows a slight positive trend in
the error both before and after implementation of the CRI filter for both regions. This occurs as larger spatial
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Figure 5. Monthly error RMS of all L/O mascons for (left) non-ice-covered regions and (right) ice-covered regions, for ocean leakage errors (errors over the ocean) and land leakage errors
(errors over the land) both before and after implementation of the CRI filter.
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gradients in mass across coastlines lead to larger differences between �x O and �x L with fixed values for rL and rO,
allowing the magnitude of the spatial gradient in mass to be proportional to the error in the filter. The increase in
the magnitude of the spatial gradient in mass across coastlines through time is attributed to trends in CLM near

coastlines for the non-ice-covered
regions, and to secular trends in ice
dynamics in outlet glaciers for ice-
covered regions. An examination of
errors spatially reveals that largest
errors are present in mascons with
highly skewed ratios of land and
ocean area within an individual L/O
mascon. The CRI filter performs
poorly in these mascons, and this is
especially the case in ice-covered
regions since rL is empirically set to
be large (section 2.1.2).

Table 1 and Figure 6 summarize
results from the simulation in
recovering mass in 52 of the
world’s largest hydrological
basins. For each basin, we provide
estimates of measurement error
(Em

MSCN), leakage error (E l
MSCN), and

residual leakage error (E l;r ). Resid-
ual leakage errors quantify
remaining leakage error after
applying one or more of the post-
processing algorithms described
in this paper. The measurement
error (Table 1, column 2; Figure 6,
blue bars) is calculated using the
scaled (by a factor 2) diagonal ele-
ments of the formal covariance
matrix from the GRACE JPL RL05M
gravity solution [Wiese et al.,
2015]. The scale factor of 2 is
regarded to provide a conserva-
tive estimate of uncertainty, as
resulting estimates are approxi-
mately the same order of magni-
tude as errors estimated using
techniques outlined by Wahr et al.
[2006]. In Wahr et al. [2006], errors
are estimated by examining resid-
uals of the GRACE estimate of
mass over a basin with respect to
a fit of a mathematical function
(typically a linear as well as a sinu-
soid with a period of 1 year) to the
data. These residuals represent
both GRACE measurement error
as well as interannual geophysical
signal; as such, this approach

Table 1. Hydrological Basins (Listed in Order of Decreasing Size) and Associated
Error RMS in Determining Mass Variations Within Each Basin Over the 5 Year Synthet-
ic Simulation Which Uses the CLM and OMCT Models as the trutha

Basin Name Em
MSCN E l

MSCN E l;r
CRI E l;r

CRI;GFCLM
E l;r

CRI;GFGLDAS

1) Amazon 6.1 1.5 1.3 0.9 1.8
2) Nile 4.0 1.5 1.2 0.8 1.0
3) Zaire 5.3 2.7 2.8 2.7 3.0
4) Mississippi 4.6 1.3 1.2 1.0 1.2
5) Ob 3.2 0.6 0.6 0.5 0.5
6) Parana 6.4 3.2 3.2 1.7 2.8
7) Yenisei 3.8 0.6 0.6 0.6 0.7
8) Lena 3.2 1.2 1.0 0.9 0.7
9) Niger 4.7 1.6 1.6 1.4 1.5
10) ChangJiang 5.6 2.4 2.3 2.1 2.4
11) Amur 4.7 2.4 1.8 1.3 1.6
12) Mackenzie 5.6 2.0 2.1 1.6 1.8
13) Ganges 8.0 2.5 2.5 2.9 3.1
14) Volga 5.3 1.9 1.9 1.4 1.8
15) Zambezi 8.9 2.8 2.6 2.5 2.7
16) Indus 6.5 6.6 6.6 4.3 5.5
17) Nelson 6.9 5.9 6.0 4.7 5.9
18) St. Lawrence 7.9 1.8 1.8 1.9 1.7
19) Orinoco 13.4 5.2 4.7 3.1 3.9
20) Murray 6.5 2.0 1.7 1.5 1.8
21) ShattelArab 7.1 1.1 1.1 1.2 1.2
22) Orange 5.2 2.6 2.7 1.9 2.4
23) HuangHe 6.1 3.2 3.2 3.2 2.9
24) Yukon 5.8 3.5 4.4 2.9 4.3
25) Senegal 5.0 4.2 4.5 1.4 2.3
26) Jubba 7.0 2.8 2.4 1.6 1.8
27) Colorado(Arizona) 5.8 2.2 2.3 1.9 2.2
28) RioGrande(US) 6.7 1.9 2.0 1.1 1.5
29) Danube 7.9 5.7 4.4 3.6 4.3
30) Tocantins 14.8 3.7 3.7 3.8 3.8
31) Mekong 17.0 10.0 7.0 5.9 7.5
32) Columbia 9.8 3.4 2.5 2.4 3.4
33) Kolyma 5.6 3.9 2.0 1.3 1.6
34) SaoFrancisco 11.6 5.6 5.5 5.8 6.1
35) Dnepr 8.9 2.5 2.4 2.3 2.2
36) Don 9.7 7.2 6.6 5.1 5.2
37) Colorado(Argentina) 12.8 7.2 7.1 6.8 9.6
38) Irrawaddy 22.0 23.6 21.7 16.1 19.4
39) Volta 11.6 7.8 6.7 4.5 5.5
40) Khatanga 5.7 3.3 3.3 3.3 3.8
41) Dvina 8.5 3.4 3.2 3.1 3.3
42) Indigirka 4.9 3.5 3.9 3.5 3.6
43) Pechora 8.7 6.1 2.9 2.7 3.6
44) Ural 8.3 4.3 4.3 3.4 3.5
45) Salween 11.9 15.2 15.1 13.6 17.3
46) Magdalena 19.2 17.9 15.0 11.5 14.4
47) Fraser 17.5 10.9 11.8 9.0 15.3
48) Anadyr 9.5 7.1 5.9 4.8 4.9
49) Yana 6.9 5.9 6.0 5.7 7.9
50) Olenek 6.5 3.6 3.2 3.2 3.3
51) Taz 10.4 6.2 6.2 3.2 3.1
52) Sacramento-San Joaquin 13.7 23.5 13.9 4.5 14.5

Mean 8.3 5.1 4.5 3.5 4.4

aEm
MSCN is the GRACE measurement error, E l

MSCN is the leakage error introduced by
the choice of basis function, i.e., by mascon-averaging, E l;r

CRI is the residual leakage
error after implementing the CRI filter, E l;r

CRI;GFCLM
is the residual leakage error after

implementing the CRI filter and applying gain factors derived from the CLM model,
and E l;r

CRI;GFGLDAS
is the residual leakage error after implementing the CRI filter and

applying gain factors derived from the GLDAS model. Results are provided in terms
of absolute error in units of millimeter of equivalent water height.
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presents a conservative estimate of
uncertainty.

Estimates of leakage error (Table 1, col-
umn 3; Figure 6, red bars) capture the
error that mascon-averaging introduces:
provided is the error RMS (over 60
months) between the composite model
and the mascon-averaged representation
of that model within each basin. The
leakage error is primarily a function of
how the shape of the basin conforms to
the placement of the mascons, con-
volved with the spatial heterogeneity of
mass within mascons that lie on basin
boundaries. On average, measurement
errors dominate leakage errors (mean
error of 8.3 mm versus 5.1 mm); this is
particularly the case for larger basins
(Figure 6) as the fraction of fully con-
tained mascons in the basins increases.
For smaller basins, leakage errors tend to
be on par with measurement errors, as

these basins have a greater percentage of their area composed of partial mascons. For select basins, leak-
age errors even eclipse measurement errors (most notably the Salween and Sacramento-San Joaquin
basins). Largest leakage errors are found in the Irrawaddy and Sacramento-San Joaquin basins, where an
error of 2.4 cm EWH is introduced. However, we note that these basin-specific leakage errors are still sub-
stantially smaller than when conventional spherical harmonic postprocessing filters are applied [Landerer
and Swenson, 2012].

To the extent that a portion of the hydrological basin lies near coastlines, some of the leakage error can be
corrected by implementing the CRI filter. Column 4 in Table 1 and Figure 6 (green circles) show the residual
leakage error after implementing the CRI filter (E l;r

CRI), calculated as the monthly error RMS over the 5 year
synthetic simulation period. Basins for which the CRI filter has the greatest impact are the Sacramento-San
Joaquin, Pechora, Magdalena, and Mekong river basins, reducing leakage errors by 9.6, 3.2, 3.0, and 3.0 mm,
respectively. There are several basins where implementing the CRI filter actually increases the overall level

of error rather than reducing it, the
largest of which is found in the Yukon
and Fraser river basins. Here the error
is increased by almost 1 mm with the
CRI filter, indicating that the CRI filter is
(relatively) ineffective in this region.
This is an area where the near-coastal
ocean mass is spatially heterogeneous
with nearby open ocean regions
according to the ECCO2 model. Simi-
larly, for land: according to the GLDAS
model, the mass signature near the
coastal regions is heterogeneous with
respect to neighboring areas further
from the coast. In this circumstance,
both rL and rO are large, leaving little
statistical information that the filter
can rely on to correctly perform the
separation of mass.
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Figure 6. Error budget for 52 of the world’s largest hydrological basins in order
of decreasing size (refer to Table 1 for corresponding basin names) showing
the measurement error (blue bars), leakage error (red bars), and residual leak-
age errors after (1) CRI filtering (green circles), (2) CRI filtering and applying
gain factors derived from CLM (yellow stars), and (3) CRI filtering and applying
gain factors derived from GLDAS (cyan triangles).
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Figure 7. Time series of mass in the Sacramento-San Joaquin river basin for the
synthetic simulation.
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Columns 5 and 6 in Table 1, along with Figure 6 (yellow stars, cyan triangles), show the residual leakage
errors after application of gain factors derived from the CLM hydrology model (E l;r

CRI;GFCLM
), and the GLDAS

hydrology model (E l;r
CRI;GFGLDAS

), respectively, calculated as the monthly error RMS over the 5 year synthetic
simulation period. Since CLM is the truth model used in the simulation, E l;r

CRI;GFCLM
is considered to provide an

upper bound on the effect of the application of gain factors in reducing leakage errors within each basin. It
is seen that for the largest basins, not only does the application of gain factors have a small effect, but the
overall result is fairly insensitive to the choice of model used to derive gain factors. The largest sensitivities
to the choice of model in deriving gain factors are seen in smaller river basins; for instance, leakage errors
are reduced in the Sacramento-San Joaquin River Basin by 19 mm (81%) using CLM-derived gain factors,
and only reduced by 9 mm (38%) using GLDAS-derived gain factors. In some instances, leakage errors are
increased with the application of gain factors rather than decreased. The most extreme example of this is in
the Fraser River Basin, where applying CLM-derived gain factors reduces error by 1.9 mm, but applying

Figure 8. The 2005–2009 annual amplitude of (a) CLM 1 OMCT at 18 3 18 resolution, (b) GLDAS 1 ECCO2 at 18 3 18 resolution, (c) after
mascon-averaging the time series in Figure 8a—this represents the native resolution of the mascon basis function, (d) after CRI-filtering
Figure 8c, (e) after applying CLM-derived gain factors to Figure 8d, and (f) after applying GLDAS-derived gain factors to Figure 8d. The out-
line of the Sacramento-San Joaquin river basin is given in dark black, and the outline of the mascon placement is given in light gray.
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GLDAS-derived gain factors increases error by 4.4 mm. Overall, however, we see that results are fairly insen-
sitive to the choice of model used to derive gain factors: there are only seven river basins where the differ-
ences exceed 2 mm RMS, and only 13 basins where the differences exceed 1 mm RMS. These differences
are small when compared to the magnitude of the measurement error within each basin (Figure 6). For the
basins that do differ the most, the discrepancies highlight the disagreement in the spatial allocation of
mass at sub-mascon resolutions within the model domains. On average, we see that the application of the
CRI filter and gain factors reduces leakage errors by a modest 0.6–1.5 mm (11%–30%), with much stronger
improvements locally (up to 9–19 mm) in small river basins.

As an example of the application of the CRI filter and gain factors, we analyze the recovery of mass within
the Sacramento-San Joaquin river basin based on the synthetic simulation (Figures 7 and 8). This is a small
river basin (�160,000 km2), and has the second highest leakage error of the basins we examined (E l

MSCN ,
Table 1). The river basin is fully contained within six mascons; none of which lie entirely within its domain
(Figure 8). This convolution of the geophysical placement of the mascons with the outline of the
Sacramento-San Joaquin River Basin leads to a large value for E l

MSCN , manifesting as a damping of the annu-
al cycle of recovered mass in the basin time series (Figure 7, green line). The spatial distribution of this mass
damping is seen in Figure 8c, in comparison with Figure 8a. The fact that half of the mascons contain mixed
land/ocean signals indicate that this basin will be sensitive to the application of the CRI filter. After applying
the CRI filter, a significant portion of mass is restored (Figure 7, blue line), and leakage errors are reduced by
40% (Table 1). The spatial distribution of mass after application of the CRI filter is seen in Figure 8d. Finally,
application of the CLM-derived gain factors is largely successful in restoring mass from outside the basin
boundary to within the basin boundary, reducing leakage errors by 81% (Table 1), while successfully restor-
ing the suppressed annual amplitude (Figure 7, red line). Comparing Figure 8e with Figure 8a reveals that
application of the gain factors is successful to a large extent in restoring mass in the correct locations within
the river basin boundary, at sub-mascon spatial resolution. The sensitivity to the choice of model used to
derive the gain factors is additionally addressed. Figure 8b shows the annual amplitude of mass according
to the GLDAS model, which places slightly less mass along the northern coast of California than the CLM
model (Figure 8a). Application of gain factors derived from the GLDAS model subsequently results in plac-
ing too much mass within the basin boundary (Figure 8f), and not enough along the coasts in this region.
This results in an overestimate of the annual cycle (Figure 7, dashed red line), and a slight increase in the
overall error RMS relative to only applying the CRI filter and no scaling (Table 1). We note that the
Sacramento-San Joaquin basin has the largest sensitivity to the two differing sets of gain factors from the
set of hydrological basins we examined, with an RMS difference in mass estimates of 1 cm EWH.

4. Discussion

In this manuscript, we have derived and described in detail two postprocessing algorithms for the JPL RL05M
mascon solution. First, a Coastline Resolution Improvement (CRI) filter is derived to separate land and ocean
mass within mascons that span coastlines. Globally, this algorithm reduces land/ocean leakage errors in our
synthetic simulation for non-ice-covered regions by nearly 50%, from 2 cm equivalent water height to 1 cm
equivalent water height. For ice-covered regions, large leakage errors due to mass loss trends in outlet glaciers
are effectively reduced by � 80% at the end of our synthetic simulation: from 10 cm equivalent water height
to 2 cm equivalent water height. The CRI filter performs less well in regions with skewed ratios of land to
ocean area within a particular L/O mascon; thus, interpreting results within these mascons requires care. The
overall general effectiveness of the CRI filter in reducing leakage errors, however, underscores the importance
of applying it when studying mass signals near coastal regions using the JPL RL05M GRACE solution.

Second, we derive a set of global grid point gain factors for applications to continental hydrology. These
gain factors are designed to redistribute and effectively down-scale mass to sub-mascon spatial scales.
These gain factors enable a reduction of leakage error when users apply exact averaging kernels for the cal-
culation of mass flux within specific hydrological basin boundaries (as opposed to averaging along mascon
boundaries). In our synthetic simulation, we find that, on average, mass flux estimates in 52 of the world’s
largest river basins are modestly improved, showing a reduction in leakage errors of 0.6–1.5 mm EWH
(11%–30%) with the application of the CRI filter and the gain factors, significantly smaller than the mean
GRACE measurement error within the basins (8.3 mm EWH). Local reductions in leakage error for smaller
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river basins are more substantial, reaching up to 9–19 mm EWH in the Sacramento-San Joaquin River Basin,
the same order of magnitude as the GRACE measurement error within the basin (14 mm EWH). Discrepan-
cies in the spatial distribution of mass within differing land surface hydrology models leads to relatively
minor differences in the recovery of mass within each basin, depending upon which model is used to derive
gain factors. This difference is less than 1 mm RMS for 39 of the 52 river basins examined, and is consistently
smaller than the GRACE measurement error for each basin examined. Differences are most prevalent for
smaller river basins, implying that extra care is warranted when quantifying leakage errors within these
basins.

Overall, the magnitude of the reduction in leakage errors due to the application of gain factors and the CRI fil-
ter is modest in comparison with the reported GRACE measurement error when averaging over large hydro-
logical basins. However, the leakage errors are not Gaussian by nature, but manifest as biases (albeit small) in
the GRACE results. Therefore, we recommend application of the CRI filter and gain factors when using the JPL
RL05M solution. These corrections will have the largest effects when studying small spatial regions.
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