2022 Arctic Saildrone Cruise

NASA Physical Oceanography and Saildrone

NASA grant #80NSSC20K0768

18 June to 16 August 2022

Important information: For this cruise, all measurements are unvalidated at this time. From initial analysis, all measurements appear to be of high quality. Note that variability differs as the Saildrones followed independent paths for most of the time. Please see the vehicle description for more information. Email the cruise PI: <u>marisolgr@faralloninstitute.org</u> for up-to-date information about any additional data flagging that might be necessary before use.

Saildrone vehicle SD-1041 off Point Hope, Alaska. Image credit: Captain Mike Leifeste

Table of Contents

Table of Contents	2
Saildrone Arctic 2022 Cruise Science Team	3
Cruise Narrative	5
General Timeline for Saildrones, 18 June 2022 to 16 August 2022	6
Vehicle description	7
Data	14
Seawater Temperature	14
Dissolved Oxygen	14
Wind Speed	16
Air Pressure	17
Air Temperature and Humidity	18
Ocean Color	19
Salinity	20
Data Format and Access	20

Saildrone Arctic 2022 Cruise Science Team

Name	Role	Research Focus	Email
Marisol García-Reyes	Principal Scientist	Diurnal warming, validation of obs, report and data distribution	marisolgr@faralloninstitute .org
Peter Minnett	Co-Investigator	Diurnal warming, satellite comparisons	pminnett@rsmas.miami.ed u
Michael Steele	Co-Investigator	Arctic Oceanography	masxxx@uw.edu
Sandra Castro	Partner	SST validation and uncertainties, diurnal warming	sandrac@colorado.edu
Peter Cornillon	Partner	Fronts, small scale variability in the upper ocean	pcornillon@me.com
Ed Armstrong	Partner	Data distribution	edward.armstrong@jpl.nas a.gov
Jorge Vazquez-Cuervo	Partner	Application of salinity and SST to coastal upwelling/validation	jvazquez@jpl.caltech.edu
Vardis Tsontos	Partner	Data archival/distribution	vtsontos@jpl.nasa.gov
Edward Cokelet	Partner	Data validation / distribution	edward.d.cokelet@noaa.g ov
Gary A. Wick	Partner	SST validation and uncertainties, diurnal warming	gary.a.wick@noaa.gov

Table 1. Science Team

Saildrone Arctic 2022 Cruise Saildrone Team

Name	Role	Focus	Email
Richard Jenkins	Chief Executive Officer	Vehicle Design / Assembly / Operations	richard@saildrone.com
Matthew Womble	Director of ocean data program	Mission planning	matt.womble@saildrone.com
Kimberly Sparling	VP Product Management	Data Management / Client Relations	kim@saildrone.com
Chris Branning	Mission Manager	Vehicle Piloting and mission execution	chris.branning@saildrone.co m
Julia Paxton	Mission Control Manager	Vehicle Piloting and mission execution	julia.paxton@saildrone.com
Charles Hamel	Mission Manager	Vehicle Piloting and mission execution	charles.hamel@saildrone.co m

Cruise Narrative

The two Saildrone vehicles (SD-1041, SD-1046) in this cruise departed from Dutch Harbor, Alaska on a 60-day cruise in the Chukchi Sea. Scientific data sampling occurred from 18 June to 16 August 2022, once the vehicles made it to the Bering Strait (Figure 1).

The overall mission objective for 2022 was to measure atmospheric and oceanographic conditions in Alaskan arctic waters, specifically in collaboration with the Distributed Biological Observatory (DBO; <u>https://www.pmel.noaa.gov/dbo/;</u> <u>https://dbo.cbl.umces.edu/</u>). Scientific objectives included collecting upper ocean temperature gradients in frontal regions with a full suite of ocean measurements, which could lead to significant improvements in the modeling of diurnal warming events. Additionally, these new data will provide additional Arctic SST observations to benefit SST satellite remote sensing algorithm development and validation, and will collect additional data for studies of air- sea-ice interactions.

The Saildrones transited to the Bering Strait, separating after reaching Point Hope, AK. SD-1041 then made repeat transects from Point Hope southwestward to near the International Date Line and back again, along DBO line #3. SD-1046 continued north to DBO line #4, and then when the sea ice retreated enough to allow safe passage, north again to DBO line #5. The saildrones approached the sea ice edge as safely as possible to measure air-sea heat and momentum fluxes in the ocean near sea ice and to validate satellite sea-surface temperature measurements in the Arctic. Each Saildrone was equipped to measure air temperature, relative humidity, barometric pressure, surface skin temperature, wind speed and direction, wave height and period, seawater temperature and salinity, chlorophyll concentration, and dissolved oxygen (Figure 2). Both vehicles measured near surface currents with 300 kHz acoustic Doppler current profilers (ADCP). Additionally, seven temperature data loggers were positioned vertically along the hull to provide further information on thermal variability near the ocean surface.

A special emphasis during this year's cruise was to better understand the spatial/temporal scales of air-sea covariance in the Chukchi Sea, and to better understand the local processes by collecting oceanographic data where biological transects are also conducted. High concentration of sea ice at the beginning delayed the mission, limiting the number of transects in the Chukchi Sea.

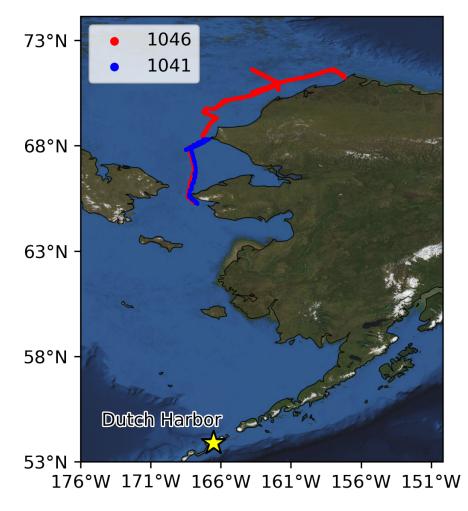


Figure 1. Cruise tracks for the 2022 Arctic Saildrone deployments for the time of data collection.

General Timeline for Saildrones, 18 June 2022 to 16 August 2022

May 18: Saildrone vehicles departed from Dutch Harbor for the Bering Strait
June18: Saildrones reach the Bering Strait, sampling started
July 02: Vehicle SD-1046 continues its transit towards north Alaska, while SD-1041 starts the Point Hope transect
August 16: End of scientific sampling, start transit back to Dutch Harbor
September 14: SD-1041 recovered at Dutch Harbor
September 16: SD-1046 recovered at Dutch Harbor

Vehicle description

The following diagram shows the standard configuration of Saildrone vehicles. For this campaign, some instrumentation is different, some in depth/height, and others instruments that are replaced for the particular purposes of this cruise. Details in the next tables and the figures of the Data section.

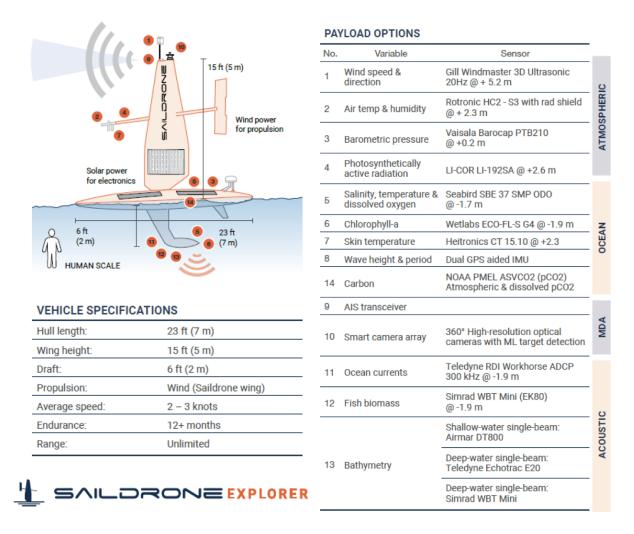


Figure 2. Saildrone vehicle dimensions and instrumentation placement for MISST3 2022 Cruise. Note that the radiometer (7) is measuring upwelling radiation in a given spectral interval, and not skin SST which requires a measurement of incoming infrared sky radiance to correct for the reflection at the sea surface. Image credit: Saildrone, Inc.

Figure 3. Seven Seabird SBE56 temperature loggers were mounted on the keel at depths specified in Table 5. Image credit: Saildrone, Inc.

Table 3. Information on the main variables of the Saildrone vehicle *in situ* dataset from the standard vehicle payload. This table is meant to accompany the Saildrone data description. See the text for more details on each dataset.

Variable Name	Variable	Sensor Description	Model Name	Installed Height (m)	Sampling Schedule
BKSCT_RED_MEAN	Optical backscatter at 650 nm	Fluorometer	WET Labs FLS	-1.9	12s on, 48s off
BARO_PRES_MEAN	Air pressure	Barometer	Vaisala: PTB210	0.2	60s on, 240s off
CDOM_MEAN	CDOM concentration	Fluorometer	WET Labs FLS	-1.9	12s on, 48s off
CHLOR_WETLABS_ MEAN	Chlorophyll concentration	Fluorometer	WET Labs FLS	-1.9	12s on, 48s off
COND_SBE37_MEAN	Seawater conductivity	Sea-Bird CT-ODO	SBE37-SM P-ODO Microcat	-1.7	12s on, 588s off
GUST_WND_MEAN	Wind gust speed	Anemometer	Gill: 1590-PK-02 0	5.2	60s on, 240s off
O2_CONC_SBE37_M EAN	Oxygen concentration	Sea-Bird CT-ODO	SBE37-SM P-ODO Microcat	-1.7	12s on, 588s off
O2_SAT_SBE37_MEA N	Oxygen saturation	Sea-Bird CT-ODO	SBE37-SM P-ODO Microcat	-1.7	12s on, 588s off
PAR_AIR_MEAN	Photosynthetically active radiation in air	LI-COR PAR	LI-COR: LI-192SA	2.6	Always On
RH_MEAN	Relative humidity	AT/RH	Rotronic: HC2-S3	2.3	60s on, 240s off
SAL_SBE37_MEAN	Seawater salinity	Sea-Bird CT-ODO	SBE37-SM P-ODO Microcat	-1.7	12s on, 588s off
TEMP_AIR_MEAN	Air temperature	AT/RH	Rotronic: HC2-S3	2.3	60s on, 240s off
TEMP_IR_SEA_WING _UNCOMP_MEAN	Wing Sea IR Temperature	Wing IR Pyrometer	Heitronics: CT15.10	2.25	30s on, 270s off
TEMP_SBE37_MEAN	Seawater temperature	Sea-Bird CT-ODO	SBE37-SM P-ODO Microcat	-1.7	12s on, 588s off
UWND_MEAN	Eastward wind speed	Anemometer	Gill: 1590-PK-02 0	5.2	60s on, 240s off

VWND_MEAN	Northward wind speed	Anemometer	Gill: 1590-PK-02 0	5.2	60s on, 240s off
WWND_MEAN	Downward wind speed	Anemometer	Gill: 1590-PK-02 0	5.2	60s on, 240s off
WATER_CURRENT_S PEED_MEAN	Water Current Speed	ADCP	Teledyne: Workhorse WHM300-I- UG1	-1.9	300s on, 300s off
WATER_CURRENT_ DIRECTION_MEAN	Water Current Direction	ADCP	Teledyne: Workhorse WHM300-I- UG1	-1.9	300s on, 300s off
WAVE_DOMINANT_P ERIOD	Dominant wave period	Hull IMU	VectorNav: VN-300	0.34	Always On
WAVE_SIGNIFICANT _HEIGHT	Significant wave height	Hull IMU	VectorNav: VN-300	0.34	Always On
WIND_MEASUREME NT_HEIGHT_MEAN	Wind measurement height	Anemometer	Gill: 1590-PK-02 0	5.2	60s on, 240s off
TEMP_DEPTH_HALF METER_MEAN	Seawater temperature at depth of 0.5m	Temperature Logger	RBR: Coda^3 T	-0.5	
latitude	Latitude	Hull IMU	VectorNav: VN-300	0.34	Always On
longitude	Longitude	Hull IMU	VectorNav: VN-300	0.34	Always On
time	time UTC				
trajectory	Vehicle identification number				

Table 4. Information on the ocean current *in situ* Saildrone instrument: 300kHz Teledyne RDI ADCP Workhorse Monitor WHM300. The ADCP is installed at a depth of 1.9m and configured with 2m bins, with a max depth of 102m. ADCP data is provided at 5min resolution (sampling schedule 300s on, 300s off) and corrected with the vehicle velocity. The ADCP data was processed to netCDF files by Saildrone. This table is meant to accompany the Saildrone data description. Instrument website: www.teledynemarine.com/workhorse-monitor-adcp

Variable Name	Variable	
vel_east	East velocity	
vel_north	North velocity	
vel_up	Vertical velocity up	
roll	Platform roll angle	
pitch	Platform pitch angle	
nav_start_time	Navigation start time	
nav_start_longitude	Longitude of ensemble start	
nav_start_latitude	Latitude of ensemble start	
nav_end_time	Navigation end time	
nav_end_longitude	Longitude of ensemble end	
nav_end_latitude	Latitude of ensemble start	
heading	Vehicle heading	
error_vel	Error of velocity	
cell_depth	Depth of bin center	
bt_range	Bottom track range	
bt_amp	Bottom track echo amplitude	
bt_cor	Bottom track correlation	
bt_percent_good	Bottom track percent good	
bt_vel_east	Bottom track velocity east	

bt_vel_north	Bottom track velocity north		
bt_vel_up	Bottom track velocity up		
correlation	Correlation		
echo_intensity	Echo amplitude		
percent_good	Percent good using 3 or 4 beam solutions		
percent_good_3_beam	Percent good using 3 beam solution		
percent_good_4_beam	Percent good using 4 beam solution		
latitude	Latitude		
longitude	Longitude		
time	time UTC		
trajectory	Saildrone vehicle identification number		

Table 5. Information on the Saildrone SBE56 temperature logger *in situ* dataset. The depth of the deepest logger (#7) differ slightly in each saildrone; both depths are given. This table is meant to accompany the Saildrone data description. See the report for more details on each dataset. Product webpage:

http://www.seabird.com/sbe56-temperature-logger

Variable Name	Variable	Installed Depth (m)	Sampling Schedule
sea_water_temperature_1	temperature	0.330	10 sec avg to 1m
sea_water_temperature_2	temperature	0.430	10 sec avg to 1m
sea_water_temperature_3	temperature	0.830	10 sec avg to 1m
sea_water_temperature_4	temperature	1.084	10 sec avg to 1m
sea_water_temperature_5	temperature	1.200	10 sec avg to 1m
sea_water_temperature_6	temperature	1.420	10 sec avg to 1m
sea_water_temperature_7	temperature	1.740, 1.750	10 sec avg to 1m
time	time UTC		

Data

Seawater Temperature

Saildrone carries several instruments for measuring seawater temperature. These include one CTD-ODO that measures sea water temperature at 1.7 meters depth. The pyrometer was mounted on the wing. The pyrometer was made by Heitronics with a model number of CT15.10. These measured temperatures should be considered as experimental and used with caution.

The Seabird SBE37 CT-ODO measures seawater temperature to high accuracy and with fast sampling. The highly stable instrument makes it possible to preserve the initial calibration in rapid sampling.

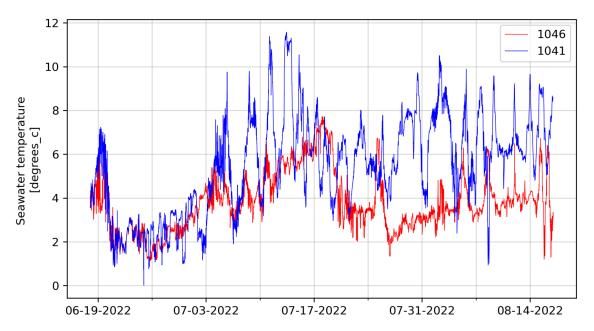


Figure 4. Seawater temperatures measured by SBE37 instruments at 1.7 m depth during the cruises.

Dissolved Oxygen

The vehicles measure oxygen concentration and saturation using an unpumped SBE37 CTD-ODO. Data are averaged into 1 minute means using 12 sec of 1Hz-sampled data. Saildrone designed the flow-thru so that "fresh" water would always be flowing past dissolved oxygen sensor due to motion of the vehicle, the drone's motion is essentially providing pumping. The instruments are installed at 1.7m depth.

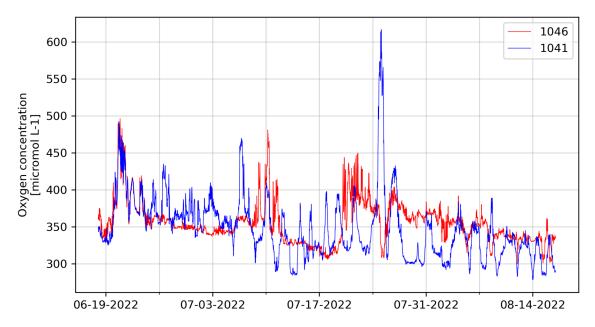


Figure 6. SBE37 O_2 concentrations measured during the cruises.

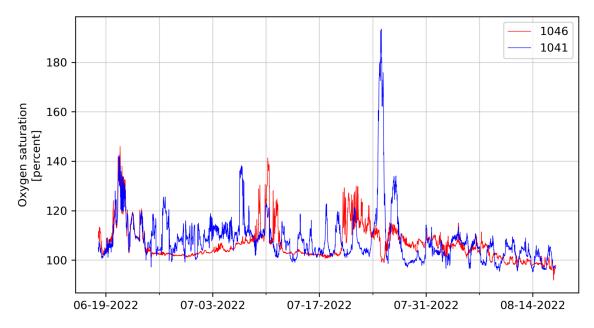


Figure 7. SBE37 O₂ saturations measured during the cruises.

Wind Speed

Three-dimensional wind vectors and gust values are collected by a Gill Anemometer <u>1590-PK-020</u>. The anemometer is located at the top of the Saildrone mast at a height of 5.2 m. Data sampled at 20 Hz are averaged into 1 minute values. Wind measurements are transformed and corrected with tangential and translational velocity in every sample.

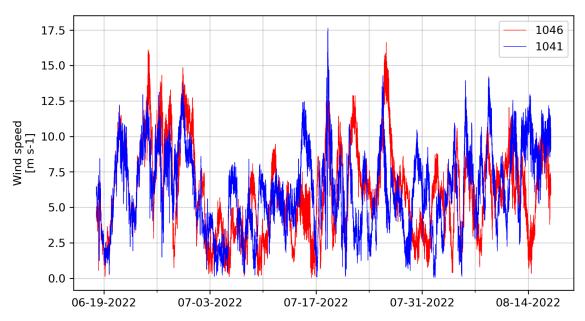
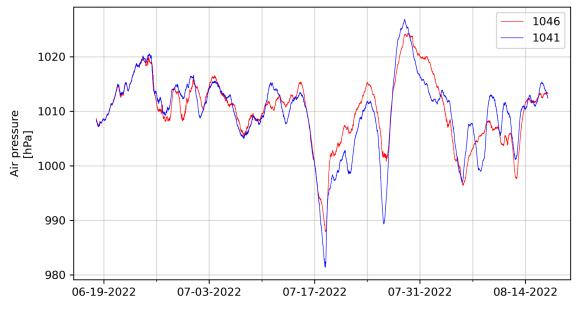



Figure 9. Wind speeds measured during the cruises.

Air Pressure

Barometric pressure is measured by a Vaisala Barometer PTB210 installed at a height of 0.2 m. Data sampled at 1Hz are averaged into 1 minute values.

Figure 10. Air pressures measured during the cruises.

Air Temperature and Humidity

Air temperature and humidity were measured by a Rotronic AT/RH HC2-S3 installed at a height of 2.3 m. Data sampled at 1Hz are averaged into 1 minute values.

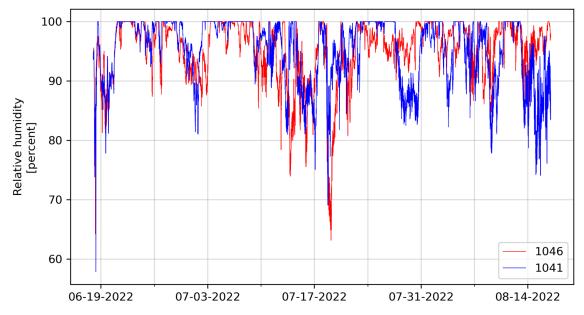


Figure 11. Relative humidity measured during the cruises.

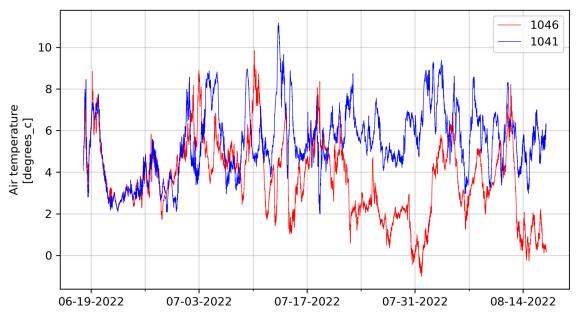


Figure 12. Air temperatures measured during the cruises.

Ocean Color

Chlorophyll concentration, CDOM concentration, and optical backscatter at 650 nm were measured by a WET Labs Fluorometer FLS installed at a depth of 1.7 m. Data are averaged into 1 minute averages using 12 sec of data.

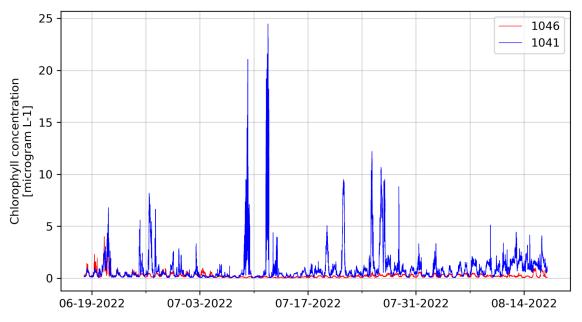


Figure 13. Chlorophyll concentrations measured by the Wetlabs instruments.

Salinity

Seawater salinity is derived from temperature and conductivity measured by the SBE37 CT-ODO. Data sampled at 1 Hz are averaged into 1 minute averages using 12 sec of data.

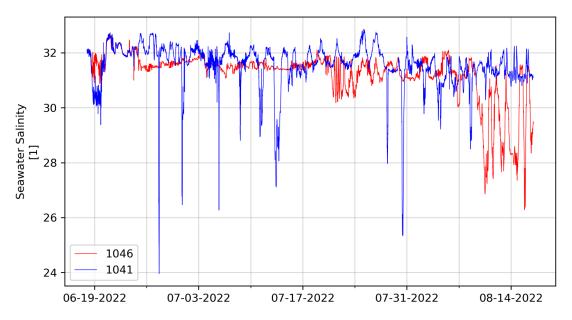


Figure 16. Salinity from SBE37 CT-ODO instrument.

Data Format and Access

All the data are in netcdf files, which are CF/ACDD standards compliant and consistent with the NOAA/NCEI *in situ* template v2.0. Data for deployments SD-1041 and SD-1046 may be accessed through the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) via:

https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC_2022.