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Key Points: 

● Use of harmonized inputs affords highest temporal resolution and spatial 

coverage possible. 

● Subpixel scale inundation is also targeted.   

● Inundation dynamics in critical habitats are uncovered with precision that 

improves science, resource management, and hazard mitigation/response.  

 

  



Abstract 
Satellite-based monitoring of surface water extent provides an unequaled, comprehensive view 

of the global distribution of surface water. The Dynamic Surface Water Extent from Harmonized 

Landsat Sentinel-2 (DSWx-HLS) algorithm generates data that indicate whether surface water is 

present at the time of input image collection with a spatial resolution of single image pixels. The 

algorithm accentuates and exploits surface reflectance differences exhibited among water and 

other land covers across various portions of the light spectrum. The algorithm targets open 

surface water, pixels entirely covered by water only, as well as partial surface water, cases where 

water, vegetation, and soil are present at subpixel scale. DSWx-HLS tests rely on several indices 

calculated from the input surface reflectance bands. The algorithm uses data on land cover, fused 

from Copernicus Global Land Cover and WorldCover data, and a modification of the Copernicus 

Digital Elevation Model to reduce commission errors. Ten output layers provide transparency 

and flexibility in use, supporting a broad range of applications. Verification of DSWx-HLS 

performance given a range of cloud cover is based on comparison against data derived from 

nearly coincident cloud-free high resolution satellite imagery selected through global stratified 

random sampling. Overall accuracies of 96% and 88% were achieved for open water and partial 

surface water pixels, respectively. The DSWx-HLS product is generated by the Observational 

Products for End-Users from Remote Sensing (OPERA) Project and distributed at no cost to the 

user through the National Aeronautics and Space Administration (NASA) Polar Oceans 

Distributive Archive Center (PO.DAAC) and NASA EarthData. 

 

Plain Language Summary 
Inland surface water is a critical resource for agriculture, industry, power generation, recreation, 

and household use. Earth orbiting satellites systematically collect imagery that can be used to 

monitor variations in surface water availability and condition. To automatically analyze these 

images for scientific and resource management purposes, they must be processed into 

information computer models can easily manipulate. This document describes the theory and 

procedures used to automatically convert satellite images into maps of surface water extent. The 

procedure and the data product created are both named Dynamic Surface Water Extent from 

Harmonized Landsat Sentinel, or DSWx-HLS. Other procedures used for this purpose typically 

only target open surface water, that is, areas completely covered by nothing but water. DSWx-



HLS also targets partial surface water, that is, individual areas (pixels) measured by the satellite 

sensor with water and vegetation on or above the water surface. The DSWx-HLS process creates 

10 output layers that provide transparency, allowing the user to understand exactly why each 

pixel received its label. Having multiple layers also provides flexibility, providing choices 

regarding which output layer is most appropriate for real-world condition and application of 

interest. DSWx-HLS is available at no cost to the user through the NASA Polar Oceans 

Distributive Archive Center (PO.DAAC) and NASA EarthData. 

 

Keywords: Remote Sensing, Eco-Hydrology, Floodplain dynamics, Reservoirs, Wetlands, 

Geomorphology-fluvial  

 

Version Description 
This is Version 1.0 of the Dynamic Surface Water eXtent from Harmonized Landsat/Sentinel-2 

(DSWx-HLS) Algorithm.  



1  Introduction 
Inland surface water is a critical resource for agriculture, industry, power generation, recreation, 

and potable uses. The ability to track variations in and persistence of surface water extent 

facilitates our understanding of human-land-climate interactions and may improve allocation and 

conservation of resources. Satellite-based monitoring of surface water extent provides an 

unequaled, comprehensive view of the global distribution of surface water. The Dynamic Surface 

Water Extent from Harmonized Landsat Sentinel-2 (DSWx-HLS) algorithm generates 

geographic data that indicate whether surface water is present at the time of input image 

collection with a spatial resolution of single image pixels. Analyzed in series, multiple DSWx- 

HLS products afford spatially distributed representation of surface water dynamics. The DSWx- 

HLS algorithm and its products are designed with scientific and natural resource managers in 

mind – emphasizing transparency, flexibility, and utility to the greatest degree possible at 

landscape scale given moderate resolution multispectral satellite imagery. This document 

describes the DSWx-HLS algorithm as implemented for near-global processing by the NASA- 

funded Jet Propulsion Laboratory (JPL) project named Operational Products for End-users from 

Remote Sensing Analysis (OPERA). Following treatments of algorithm lineage and scientific 

underpinning, the required processing is described in a manner that facilitates implementation. 

 

2  Context/Background 
The need to detect and track surface water occurrence at HLS pixel resolution was recognized 

through various research efforts aimed at producing useful parameters for hydrologic modeling 

and aquatic habitat resource management given systematically collected satellite data like those 

from Landsat. Examples include estimation of potential surface water storage at the finest 

resolution possible to model effects of land use and climate change on hydrology (Jones, 2011; 

Viger, Hay, Jones, & Buell, 2010) and the indexing of vegetation resistance to flow in wetland 

environments like the Florida Everglades (Jones, 2011). The requirements imposed and 

experience gained by these efforts highlighted the insufficiency of methods that detect water 

only when it is the nearly dominant, if not the sole land cover within a pixel (termed “open 

water”). For these and many other applications, it is important to detect inundation when pixels 

may also contain vegetation, bare soils, or developed land covers. 
 



2.1 Historical Perspective 

DSWx-HLS has its roots in the original U.S. Geological Survey (USGS) Dynamic Surface Water 

Extent (DSWE) algorithm  (Jones, 2019; USGS, 2019). Designed to be globally applicable, the 

required inputs for DSWE were originally limited to surface reflectance data generated from 

Landsat satellites and a digital elevation model (DEM), given the ready availability of DEM data 

in some form. The utility of data generated through the DSWE algorithm has been evaluated for 

a variety of applications (Ahmad, Hossain, Eldardiry, & Pavelsky, 2020; Beveridge, Hossain, & 

Bonnema, 2020; Bjerklie et al., 2018; Chen, Huang, Chen, & Feng, 2021; Gaines, Tulbure, & 

Perin, 2022; Huang et al., 2017; Owusu, Snigdha, Martin, & Kalyanapu, 2022; Perin, Tulbure, 

Gaines, Reba, & Yaeger, 2021, 2022; Petrakis, 2022; Rowe et al., 2021; Soulard, Walker, & 

Petrakis, 2020; Vanderhoof et al., 2020; Walker, Soulard, & Petrakis, 2020; Yang et al., 2021). 

The simplicity of the DSWE algorithm is evidenced by implementations on a variety of 

hardware/software systems, some of which are documented in peer-reviewed scientific literature 

(Ahmad et al., 2020; Beveridge et al., 2020; Bjerklie et al., 2018; Owusu et al., 2022; Petrakis, 

2022; Taylor, Sullivan, Teitelbaum, Reese, & Prosser, 2022; Vanderhoof et al., 2020). The 

USGS Earth Resources Observation and Science (EROS) Center has generated DSWE 

operationally since 2019. Production has been restricted to the United States and its territories 

because EROS only produces DSWE using Landsat Analysis Ready Data (ARD), which are only 

made available for the United States at this time. Given the opportunity presented by a complete 

reprocessing of the US Landsat ARD Archive and forward processing of ARD using Landsat 

Collection 2 Level 2 scene inputs, the algorithm was revised at the USGS Hydrologic Remote 

Sensing Branch to use US-specific ancillary inputs to reduce errors uncovered through extensive 

Collection 1 DSWE data evaluation and use. The HLS-based implementation through OPERA 

will not provide the length of historic record afforded by the use of the entire Landsat Archive as 

input. However, the OPERA project presents an opportunity to operationally produce DSWE-

like data (i.e., DSWx-HLS) at near-global scale from both Landsat and Sentinel-2 inputs. This 

greatly increases both the spatial extent and temporal frequency of surface water observations. 

Because the land cover data used for USGS DSWE production is not available for areas beyond 

the United States and its territories, for DSWx-HLS production land cover is synthesized from 

openly available datasets with global coverage, allowing the extension of the DSWE model to 

global scale with highest temporal frequency. 



 

3  Algorithm Description  
3.1 Scientific Theory 

Like its predecessor DSWE, the DSWx-HLS algorithm is designed to accentuate and exploit 

differences in surface reflectance characteristics that are exhibited among water and other land 

covers (Figure 1) across various portions of the light spectrum (Jones, 2015) to evaluate surface 

water occurrence. Five tests drawn from scientific literature are independently applied to each 

pixel. Three tests (Du & Zhou, 1998; Feyisa, Meilby, Fensholt, & Proud, 2014; Ji, Zhang, & 

Wylie, 2009) detect open water. Two more tests (Jones, 2015, 2019) are specifically designed to 

detect both open water and partial surface water. Laboratory-derived water, Landsat image-

derived vegetation canopy, and laboratory collected soil spectral endmembers were employed in 

spectral mixture modeling for DSWE test development (e.g., Figure 2, Jones 2019). Use of at-

surface reflectance spectra for threshold development and algorithm input provides a physical 

basis for threshold selection, eliminating the need to tailor thresholds to each scene or collect 

scene-specific training data (Jones 2019). 



 

 Figure 1. Field collected, fine spectral resolution spectra of various land cover canopies and 
ground surfaces given both dry and inundation conditions. The influence of water substrates on 
reflectance across the spectrum are enhanced and exploited. The number of sampling locations 
per class are shown in parentheses. Spurious data around 1850 nanometers is caused by water 
vapor in the atmosphere, does not impact the analysis, and was removed.   
 



 

 

Figure 2. Ternary diagram showing results of one partial surface water test applied against 
Landsat Thematic Mapper (TM) given mixtures of black soil (Mollisol_BL), herbaceous 
vegetation cover (Grass), and 'pure' water using the revised (v2) aggressive (Aggrsv) DSWE 
tests (Jones 2019). Blue axis: Water (W); Green axis: Vegetation (V); Brown axis: Soil (S). 
Black points represent the mixtures for which water is detected given the aggressive test.  
The DSWx-HLS algorithm (Figure 3) consists of a series of tests producing the intermediate 
(DIAG, WTR-1, WTR-2) and ancillary (CLOUD, LAND, SHAD, DEM) layers that are 
subsequently used to generate the final (WTR, BWTR, and CONF) product layers described and 
illustrated in Section 3.2. 
 



 
  

Figure 3. At-surface Harmonized Landsat Sentinel-2 (HLS) reflectance pixels (block 1 or B1) 
are assigned diagnostic values (DIAG) based on detections across five tests which are then 
interpreted to water, partial surface water, and not water values (WTR-1) based on the 
combination of 'positive' detections (B2). Assembled land cover and elevation data (B3) are used 
in combination with HLS to conduct additional tests that reduce commission errors (B4) before 
HLS Fmask inputs are used to mask cloud, cloud shadow, and snow/ice covered areas (B5 and 
B6). A binary water layer and a layer containing confidence information related to open and 
partial surface water classifications are generated along with product metadata (B7 and B8). 
 
In combination, the layers output from DSWx-HLS allow the user to fully understand why any 

given pixel has been labeled to its ultimate DSWx-HLS value. Also, intermediate products can 

be used to improve the utility of DSWx-HLS when and where the distributed final layers (WTR, 

BWTR, and CONF) may be insufficient for the intended application. The five tests (Figure 3, 

B2) used for USGS DSWE and DSWx-HLS product generation employ at-surface reflectance or 

indices derived from them. 

 
3.2 Mathematical Theory 

3.2.1 Spectral Indices Calculation 

The DSWx-HLS tests rely on several spectral water and vegetation indices calculated from the 



input surface reflectance bands. They are calculated for each valid data pixel as indicated below 

using the bands described in Table 1: 
 

Index 1:  Modified Normalized Difference Wetness Index (MNDWI) (Xu, 2006): 

 (Green – SWIR1) / (Green + SWIR1) (1) 

Index 2: Multi-band Spectral Relationship Visible (MBSRV) (Du & Zhou, 1998): 

 Green + Red (2) 

Index 3: Multi-band Spectral Relationship Near-Infrared (MBSRN) (Du & Zhou, 1998): 

 NIR + SWIR1 (3) 

Index 4: Automated Water Extent Shadow (AWESH) (Feyisa et al., 2014): 

 blue + (2.5 * green) – (1.5 * MBSRN) – (0.25 * SWIR2) (4) 

Index 5: Normalized Difference Vegetation Index (NDVI) (Tucker, 1979): 

 (NIR – red) / (NIR + red) (5) 

Table 1. Harmonized Landsat Sentinel (HLS) Data are the Primary Input to DSWx-HLS.  
Band Name OLI 

Band # 
MSI 

Band # 
HLS 

band code 
name L8 

HLS 
band code 
name S2 

Wavelength 
(micrometers) 

Coastal Aerosol 1 1 B01 B01 0.43 – 0.45* 
Blue 2 2 B02 B02 0.45 - 0.51* 

Green 3 3 B03 B03 0.53 – 0.59* 
Red 4 4 B04 B04 0.64 – 0.67* 

Red-Edge 1 - 5 - B05 0.69 – 0.71** 
Red-Edge 2 - 6 - B06 0.73 – 0.75** 
Red-Edge 3 - 7 - B07 0.77 – 0.79** 
NIR Broad - 8 - B08 0.78 – 0.88** 

NIR Narrow 5 8A B05 B8A 0.85 – 0.88** 
SWIR 1 6 11 B06 B11 1.57 – 1.65* 
SWIR 2 7 12 B07 B12 2.11 – 2.29* 

Water vapor - 9 - B09 0.93 – 0.95** 
Cirrus 9 10 B09 B10 1.36 – 1.38* 

Thermal Infrared 
1 

10 - B10 - 10.60 – 11.19* 

Thermal Infrared 
2 

11 - B11 - 11.50 – 12.51* 

Fmask - - - - - 
 
Note. Attributes of the bands provided in HLS are shown (Masek, Ju et al. 2021). Bands used in 
DSWx-HLS are in bold font. A single asterisk indicates values provided by Landsat Operational 
Land Imager (OLI) specifications and a double asterisk indicates values from Sentinel-2 



Multispectral Sensing Instrument (MSI). FMASK is the HLS quality assurance layer from which 
snow, cloud, and cloud shadow information is drawn. 
 

3.2.2 Diagnostic (DIAG) Layer Calculation 

The following logical tests, noted by test number and an abbreviation shown in parentheses, 

employ the indices described above and thresholds indicated in Table 2. Negative test results in a 

value of 0 but the positive result of each test is assigned a unique number. Specifically, a TRUE 

condition resulting from tests 1, 2, 3, 4, and 5 is assigned a value of 1, 10, 100, 1,000, and 

10,000, respectively. This means the combination of positive tests are efficiently noted for every 

pixel. The test specifics and resulting value assignments are as follows: 

 

Test 1 (MNDWI) (Xu, 2006): Compare MNDWI to the Water Index Greater Than (WIGT) 

  threshold: if (MNDWI > WIGT) set the ones digit (e.g., 00001) 

Test 2 (MBSR) (Du & Zhou, 1998): Compare MBSRV and MBSRN values to each other: if  

 (MBSRV > MBSRN) set the tens digit (e.g., 00010) 

Test 3 (AWESH) (Feyisa et al., 2014): Compare AWESH to the Automated Water  

 Greater Than (AWESHT) threshold: if (AWESH > AWESHT) set the hundreds digit  

 (e.g., 00100) 

Test 4 (PSW1) (Jones, 2019): Compare the calculated values of MNDWI and NDVI along with  

 the input NIR and SWIR1 band values to their respective thresholds: if (MNDWI>  

 PSWT_1_MNDWI & SWIR1 < PSWT1_1_swir1 & NIR < PSWT_1_nir & 

 NDVI < PSWT_1_ndvi) set the thousands digit (e.g., 01000) 

Test 5 (PSW2) (Jones, 2019): Compare the MNDWI along with the Blue, NIR, SWIR1, and  

 SWIR2 bands to the following thresholds: if (MNDWI > PSWT_2_MNDWI & Blue <  

 PSWT_2_blue & SWIR1 < PSWT_2_swir1 & SWIR2 < PSWT_2_swir2 & NIR <  

 _2_nir) set the ten-thousands digit (e.g., 10000) 

 

DSWx-HLS efficiency comes from test reliance on at-surface reflectance and index thresholds. 

The threshold names, brief descriptions, theoretical range, and value used for DSWx-HLS test 

purposes are indicated in Table 2. 

 

 



Table 2. Threshold values (Value) applied in the DSWx-HLS tests.  
 

Threshold Name Description Range Value 
WIGT Modified Normalized Difference Wetness 

Index (MNDWI) 
-1 to 1 0.124 

AWESHT Automated Water Extent Shadow -2 to 2 0.0 
PSWT_1_MNDWI Partial Surface Water Test-1 MNDWI -1 to 1 -0.44 
PSWT_1_NIR Partial Surface Water Test-1 Near Infrared 0 – 10,000 1,500 
PSWT_1_SWIR1 Partial Surface Water Test-1 Shortwave 

Infrared 1 
0 – 10,000 900 

PSWT_1_NDVI Partial Surface Water Test-1 Normalized 
Difference Vegetation Index 

-1 to 1 0.70 

PSWT_2_MNDWI Partial Surface Water Test-2 MNDWI -1 to 1 -0.5 

PSWT_2_BLUE Partial Surface Water Test-2 Blue 0 – 10,000 1,000 
PSWT_2_NIR Partial Surface Water Test-2 Near Infrared 0 – 10,000 2,500 
PSWT_2_SWIR1 Partial Surface Water Test-2 Shortwave 

Infrared 1 
0 – 10,000 3,000 

PSWT_2_SWIR2 Partial Surface Water Test-2 Shortwave 
Infrared 2 

0 – 10,000 1,000 

LCMASK_NIR Land Cover Mask Near Infrared 0 – 10,000 1,200 
 

Note. Single-band threshold values are expressed in reflectance scaled similarly to the HLS 
inputs (scale factor is 0.0001). Where band ratios are generated, decimal threshold values are 
indicated. 
 

The result of this process is the “diagnostic layer’ (DIAG), which constitutes the foundation of 

the DSWx-HLS algorithm. DIAG values range from 0 to 11,111, corresponding to no positive 

water test results, to all water tests are positive, respectively. A granule centered on Los Antiguos 

along the border between Chile and Argentina, South America is used here to illustrate the 

DSWx-HLS input surface reflectance bands and output layers. A false color composite of the 

focus area within the granule is provided as Figure 4. The corresponding DIAG layer output is 

provided as Figure 5. 

 



 
Figure 4. False color composite (R: SWIR1: G: NIR: B: Green) for a HLS granule 
(OPERA_L3_DSWx-HLS_T18GYP_20230426T142425Z_20230428T080624Z_L8_30_v1.0) 
centered on Los Antiguos, on the border of Chile and Argentina. Coordinates shown are UTM 
Northings and Eastings. Subsequent figures illustrating DSWx-HLS output layers are for the 
same area and from this HLS input.  
 



 
Figure 5. Diagnostic layer (DIAG) shown in grayscale given the above HLS input. Black areas 
are 0 (not water), grey areas have values above 0 and below 10,000, and white areas have 
diagnostic values above 10,000. Coordinates shown are UTM Northings and Eastings. 
 

3.2.3 Interpreted Layer WTR-1 Calculation 

Next, the DIAG values are interpreted to “not water”, “open water”, or “partial surface water” 

categories with initial confidence attributes (Table 3, CONF Value columns). The two tests 

specifically designed for partial surface water detection were originally quantitatively assessed 

by Jones (2019). The Partial Surface Water class nomenclature reflects the difference in the 

modeled minimum amount of water deemed deductible through each test (Jones 2019) as well as 

the acceptance of fewer positive test results in an effort to fully capture inundation. The 

assignment of all confidence attribute values was originally calibrated through examination of 

USGS DSWE times series data over 117 study areas spread throughout the US states and 

territories. They were further checked during DSWx-HLS calibration. The five confidence 

classes are: Not Water (0); Open Water High Confidence (1); Open Water Moderate Confidence 



(2); Partial Surface Water Conservative (3); and Partial Surface Water Aggressive (4). To reduce 

complexity and facilitate concerted use of multiple DSWx products given subsequent releases of 

DSWx based on various synthetic aperture radar (SAR) systems, the pairs of water classes are 

further collapsed into a single open water and single partial surface water class (Table 3, column 

headings). The generated output is the interpreted layer named WTR-1. An example based on the 

diagnostic data shown in Figure 5 is provided as Figure 6. Note that the CONF values are 

incorporated in the CONF layer described in Section 3.2.8. 

 

Table 3. Diagnostic (DIAG) to confidence and interpreted DSWx-HLS value conversion. 
 

WTR 
WTR-1 
WTR-2 

Not Water 
value of 0 

CONF 
Value 

WTR 
WTR-1 
WTR-2 

Open Water 
value of 1 

CONF 
Value 

WTR  
WTR-1 
WTR-2 

Partial Surface 
Water 

value of 2 

CONF 
Value 

00000 0 01111 1 11000 3 
00001 0 10111 1 00011 4 
00010 0 11011 1 00101 4 
00100 0 11101 1 00110 4 
01000 0 11110 1 01001 4 

  11111 1 01010 4 
  00111 2 01100 4 
  01011 2 10000 4 
  01101 2 10001 4 
  01110 2 10010 4 
  10011 2 10100 4 
  10101 2   
  10110 2   
  11001 2   
  11010 2   
  11100 2   

 
Note. Rows below the header are diagnostic values. Columns labeled CONF Value show 
diagnostic-confidence classes. Interpreted values shown in all column headings that include 
“WTR” show diagnostic - interpreted value relationships. Note that a value of 255 is inserted 
where the HLS input value is ‘Fill’. The five confidence classes are: Not Water (0); Open Water 
High Confidence (1); Open Water Moderate Confidence (2); Partial Surface Water Conservative 
(3); and Partial Surface Water Aggressive (4). 
 



 
Figure 6. The interpreted WTR-1 layer output as a result of reclassifying the diagnostic values 
with the scheme listed in Table 3, modified through global calibration. Open Water: dark blue. 
Partial Surface Water: light blue. Not water: white. Coordinates shown are UTM Northings and 
Eastings. 
 

This WTR-1 result is further processed to eliminate false positives due to terrain shading, aerosol 

overcorrection mitigation, certain land cover conditions, and cloud or cloud shadows. 

 

3.2.4 WTR-2 Calculation 

Particular land covers, such as large, flat, tar rooftops, or irregular evergreen forest canopies with 

shadows between trees, are sources of commission errors or ‘false positive’ detections of water. 

And in areas of high topographic relief, dark shadows under conditions of low sun angles are an 

additional source of commission errors. To reduce these errors, the algorithm generates layers for 

land cover (LAND) and terrain shadow (SHAD) and, based on WTR-1 values, applies additional 

logic. Table 4 lists the conditions considered when performing the masking of commission 



errors. In the case of forest and low-to-moderate intensity development, a more conservative test 

of NIR surface reflectance is applied when partial surface water detections are indicated by the 

initial tests and diagnostic layer values. For example: 

 

If WTR-1 = Partial Surface Water & LAND = 201 | (LAND >= 0 & LAND < 100) & NIR 

> 1200, set WTR-2 to “Not Water”, otherwise WTR-2 = WTR-1 

 

Where high intensity development occurs, testing has shown that shadows among tall buildings 

and large rooftop structures such as shopping malls and sports stadiums routinely produce false 

positives. For high intensity developed areas all open and partial surface water detections are 

masked (converted to “Not Water”) before the WTR-2 layer is output. Figure 7 shows an 

example of the WTR-2 result when this masking is applied in the South America example area. 

The following subsections describe how the algorithm creates the LAND and SHAD input 

layers. 

 

Table 4. Interpreted (WTR-1) Land Cover and Shadow Masking 

Layer Mask layer Class WTR-1 Class Other condition WTR-2 
Result 

LAND Forest Partial Surface Water NIR > 1200 Not Water 
 Low intensity 

developed 
Partial Surface Water NIR > 1200 Not Water 

 High intensity 
developed 

Open Surface Water or 
Partial Surface Water 

None Not Water 

SHAD 0 (shadow) Open Surface Water or 
Partial Surface Water 

LAND != water, 
wetland, or 
mangrove mask 

Not Water 

Note. Sequence of steps to mask the interpreted (WTR-1) layer using land cover (LAND) and 
shaded relief (SHAD) layers to generate the interpreted layer with some masking (WTR-2) layer. 
The LAND ‘Forest’ class is comprised of multiple Copernicus Global Land Cover forest classes. 
Reflectance values are shown in HLS-scaled format (e.g., 1200 = 0.12 reflectance). 
 



 
Figure 7. The WTR-2 layer output represents a refinement, in this case very subtle, of the WTR-1 
layer through masking on the terrain shadow and land cover analyses. Open Water: dark blue. 
Partial Surface Water: light blue. Not Water: white. The methods used to calculate the LAND 
and SHAD masks are detailed below and through Table 4. Coordinates shown are UTM 
Northings and Eastings. 
 
3.2.4.1 Land Cover Mask (LAND) Calculation 
 

Land cover data are used to mitigate unwanted effects of vegetation canopies and human 

developed areas on water detection algorithm accuracy. The land cover mask (LAND) layer 

(e.g., Figure 8) is used to reduce errors through three approaches (Table 4): direct masking of  

 



 
Figure 8. The LAND layer used in the process of mitigating terrain and land cover induced false 
positives. Forest Cover: green; Water and Wetland: blue; High Intensity Developed: red. 
Coordinates shown are UTM Northings and Eastings. 
 
false positives; activation of additional reflectance-based testing that determines whether 

masking is needed to reduce false positives; and limiting the application of shadow masking 

(Table 4) where water or wetlands are likely to exist to reduce false negatives created by shadow 

masking described in Section 3.2.4.2. 

 

National, regional, and global land cover datasets that are publicly available or available through 

special request were surveyed and evaluated for these purposes. Examples include: the ESA 

Climate Change Initiative Land Cover Maps (ESA, 2016), Moderate Resolution Imaging 

Spectrometer (MODIS) Land Cover Type (MCD12Q1) Version 6 (Friedl & Sulla-Menashe, 

2019), Copernicus Global Land Service (Buchhorn et al., 2020), North America Environmental 

Atlas (CEC, 2020), various data from the Large Scale Biosphere-Atmosphere Experiment (LBA-



EDO), for example (Brown, Loveland, Ohlen, & Zhu, 2003), CORINE Land Cover (Büttner et 

al., 2018). No single dataset met algorithm requirements for both thematic or spatial resolution. 

Therefore, methods to combine several moderate and finer resolution datasets were developed 

and assessed through comparison with USGS National Land Cover Database (Dewitz, 2019) and 

USGS Land Change Monitoring and Analysis data (USGS, 2022), which are fused for USGS 

Collection 2 DSWE production. Ultimately, the Copernicus Global Land Service Land Cover 

Maps (https://land.copernicus.eu/global/index.html), which have near-global coverage with 

detailed thematic resolution on land cover, but coarse spatial resolution (100 m), were selected 

for combination with the finer 10-m spatial resolution, but lower thematic resolution of European 

Space Agency (ESA) WorldCover (https://esa-worldcover.org/en). This process is outlined in 

Figure 9 and an example from an area in the Pacific Northwest, United States, is provided 

(Figure 10). 

 

 
Figure 9. Processing flow illustrating the generation of 30-m spatial resolution land cover mask 
data (LAND) through the combination of datasets with different thematic and spatial resolution. 
This layer will change as new land cover data are made available. 



 
Figure 10. A subset of the area shown in Figure 8. The legend of the Copernicus Global Service 
100-m land cover (A) shows detailed thematic content that is fused with less-precise classes of 
ESA Worldcover 10-m data (B) using the process illustrated in Figure 9 to yield the DSWx-HLS 
LAND 30-m resolution land cover data (C). 
 



At locations that USGS DSWE calibration and application identify as challenging, iterative cross 

tabulations of National Land Cover Database/Land Change Monitoring, Assessment, and 

Projection (NLCD/LCMAP) against Copernicus/WorldCover fusions were used to establish the 

algorithm for aggregating WorldCover data to create forest and developed area classes based on 

Copernicus thematic information. This procedure was fine-tuned through the DSWx-HLS 

calibration process and ultimately assessed using the verification process described in Section 5. 

To provide for the incorporation of dynamic data on human conversion of vegetated and bare 

land covers to developed ones as represented in updates to the Copernicus and WorldCover 

datasets, developed pixels are labeled according to the last two digits of the year development 

appears in the data. Values 0-99 represent low intensity developed and 100-199 represent high 

intensity developed, potentially for the years 2000 through 2099. The land cover categories that 

are relevant to DSWx-HLS WTR-2 masking (forest, developed low intensity, developed high 

intensity, water, wetlands, and mangrove) as well as the spatial thresholds for land cover data 

fusion are provided in Table 5. 

 

Table 5. LAND Layer Fusion from Various Two Inputs. 

LAND 
Class 

LAND Description CGLC 
Value(s) 

WorldCover 
Value 

WorldCover 
threshold 

Precedence 

0-99 Low Intensity 
Developed (last two 
digits indicate the 
ESA WorldCover 
dataset year) 

any 50 3 3 

100-199 High Intensity 
Developed (last two 
digits indicate the 
ESA WorldCover 
dataset year) 

any 50 7 2 

200 Water, Wetland, 
Mangrove Forest 

any 80, 90, 95 3 1 

201 Non-deciduous Forest 20, 50, 
111, 113, 
115, 116, 
121, 
123, 125, 
126 

10 6 4 

255 Fill (HLS no data) N/A N/A N/A 5 
 



Note. CGLC is Copernicus Global Land Cover. WorldCover threshold is the number of 10-m 
pixels in the relevant 30-m, CGLC-labeled pixel that must be present to result in the associated 
LAND class. N/A means ‘not applicable’. The column Precedence indicates the precedence 
order (1 for highest) in cases where two or more conditions are met. 
 

3.2.4.2 Terrain Shadow Mask (SHAD) Layer Calculation 

Shadows produced by rugged terrain are a source of commission error for water detection 

algorithms. To mitigate these errors, we create a shadow (SHAD) layer to detect areas potentially 

affected by shadow. These areas are further evaluated along with land cover data, where areas 

identified as water or wetlands are removed from the masking that is applied to the WTR-1 layer 

(see Table 4). 

 

We have implemented and compared two methods for detecting shadow areas. The first method 

is based on the solar local incidence angle and terrain slope (Shiroma, Lavalle, & Buckley, 

2022). The second method is based on Otsu dynamic thresholding (Otsu, 1979). Through visual 

evaluation of 100 pairs of solstice and equinox examples drawn from a global, stratified random 

sample, the method based on the solar local incidence angle was selected as the default algorithm 

for creating shadow masks. In addition to having a higher accuracy with respect to the expected 

shadow mask, the solar local incidence angle masking thresholds need not be dynamic, which 

avoids the occurrence of edge artifacts between neighboring tiles that might otherwise have 

different shadow thresholding given the Otsu-based approach. Nonetheless, both methods are 

described here so that users of openly distributed DSWx-HLS code have the information needed 

to understand the standard (Solar Local Incidence Angle) and optional (Otsu) algorithms. 

 

The solar geometry over the local terrain is shown in Figure 11. The solar local incidence angle 

𝜃𝜃𝑖𝑖 is defined as the angle between the solar incidence vector 𝑠𝑠 and the terrain local norm 𝑛𝑛�⃗ . The 

solar zenith 𝜃𝜃𝑧𝑧 is the angle between the local ellipsoid vertical �̂�𝑍 and the solar incidence vector 𝑠𝑠. 

The solar azimuth angle 𝜙𝜙𝑠𝑠 defines the direction of the solar incidence vector 𝑠𝑠 projected over 

the local horizontal plane (Duffie & Beckman, 2013; Kreith & Kreider, 1978). We employ the 

north-clockwise convention, i.e., the angle between the North coordinate 𝑁𝑁� and the projection of 

the solar incidence vector 𝑠𝑠 in the clockwise direction, to express 𝜙𝜙𝑠𝑠. 



 

Figure 11. Solar geometry over a ground surface patch indicating the solar angles: local 
incidence angle 𝜃𝜃𝑖𝑖, azimuth angle 𝜙𝜙𝑠𝑠, and zenith angle 𝜃𝜃𝑧𝑧; and the vectors solar incidence vector 
𝑠𝑠 and the terrain local norm 𝑛𝑛�⃗  referenced to the ellipsoid vertical �̂�𝑍 and the north coordinate 𝑁𝑁�. 
(Image derived from Shiroma et al 2022). 
 

The input HLS product metadata provides the solar azimuth angle 𝜙𝜙𝑠𝑠 and zenith angle 𝜃𝜃𝑧𝑧 in local 

coordinates. These angles are expressed as the solar incidence vector 𝑠𝑠 as: 

 

 𝑠𝑠 = [𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃𝑧𝑧 𝑠𝑠𝑠𝑠𝑛𝑛 𝜙𝜙𝑠𝑠, 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃𝑧𝑧 𝑐𝑐𝑐𝑐𝑠𝑠 𝜙𝜙𝑠𝑠, 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑧𝑧]  (6) 

 

A reference digital elevation model (DEM) is resampled over the output grid using an 

interpolation algorithm of choice (see Figure 12 left). We suggest using a higher-order 

interpolation algorithm such as bicubic or biquintic to better preserve the slope information of 

the input elevation model. In the sequence, we compute the terrain normal vector for each 

position on the output grid. 

 

 
𝑛𝑛�⃗ = �−

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

,−
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

, 1� (7) 

 

 

where  𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 and 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 are the elevation derivative with respect to the X- and Y- coordinates 

respectively, computed over the resampled DEM grid. 



 

The solar local incidence angle 𝜃𝜃𝑖𝑖  is defined as the angle between the solar incidence vector 

𝑠𝑠 and the terrain local norm 𝑛𝑛�⃗  : 

 

 
𝜃𝜃𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑠𝑠−1

𝑠𝑠 .𝑛𝑛�⃗  
|𝑠𝑠| . |𝑛𝑛�⃗ | 

 
(8) 

 

In addition to 𝜃𝜃𝑖𝑖, we also compute the slope angle α with respect to the Sun (directional slope): 

 

 𝛼𝛼 =  𝑡𝑡𝑡𝑡𝑛𝑛−1(𝑛𝑛𝑑𝑑 𝑠𝑠𝑠𝑠𝑛𝑛 𝜙𝜙𝑠𝑠  +  𝑛𝑛𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠 𝜙𝜙𝑠𝑠 ) (9) 

 

where 𝑛𝑛𝑑𝑑 and 𝑛𝑛𝑑𝑑 are the X- and Y-components of terrain normal vector 𝑛𝑛�⃗ . 

 

The detection of shadow areas based on the solar local incidence angle 𝜃𝜃𝑖𝑖 consists of two 

conditions that must evaluate to FALSE for the pixel to be considered as shadow: 

 

1. The solar local incidence angle 𝜃𝜃𝑖𝑖 is less than a threshold 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑; and 

2. The slope angle α with respect to the Sun is greater than a threshold 𝛼𝛼𝑚𝑚𝑖𝑖𝑚𝑚.  

 

If the two conditions above evaluate to FALSE, the pixel is marked as shadow (SHAD layer 

value “0”); Otherwise, the pixel is marked as not shadow (SHAD layer value “1”). 

 

The first condition tests if the local terrain surface faces the Sun having the value 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 as the 

maximum angle between the solar incidence vector 𝑠𝑠 and the terrain local norm 𝑛𝑛�⃗  for the area to 

be considered “not shadow”. The second test ensures that only backslope areas with respect to 

the Sun can be marked as shadow. This test is used to avoid cases in which flat or even foreslope 

areas with  𝜃𝜃𝑖𝑖 greater than 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 are marked as shadow by the first test. 

 

A sample terrain shadow layer (SHAD) along with its respective DEM are shown in Figure 12 

for an area within the states of Nevada and Arizona in the southwestern United States (HLS 



dataset HLS.L30.T11SQA.2019072T181446.v2.0) that has far greater topographic relief than is 

present in the South America focused example used to illustrate DSWx-HLS outputs. 

 

 

Figure 12. (left) Hillshade of a digital elevation model (DEM) based on the Copernicus DEM 30 
m, and (right) terrain shadow layer (SHAD) computed with the solar local incidence angle 
method for an area within the states of Nevada and Arizona, USA. In the right panel, black pixels 
are shadow. 
 

The DEM associated with the HLS image of South America that is used to illustrate all DSWx-

HLS algorithm outputs is provided as Figure 13. The SHAD layer produced by the Solar Local 

Incidence Angle method given the solar conditions present at the time of the HLS image capture 

are shown in Figure 14. 



 
Figure 13. The digital elevation model (DEM) for the South America sample site, used to 
calculate the shadow layer shown in Figure 14. Lowest elevation: black. Highest Elevation: 
white. Coordinates shown are UTM Northings and Eastings. 
 



 
Figure 14. The terrain shadow mask (SHAD) layer produced using the default Solar Local 
Incidence Angle algorithm based on the digital elevation model in Figure 13 and the solar 
geometry associated with the location and date/time of the example South America HLS image. 
Black pixels are ‘shadow’. 
 

With the Otsu method, the location and intensity of shading can alternatively be 

indexed through the generation of shaded relief layers (Figure 15. left) using the 

scene centroid and solar angles at the time of imaging. 



 
Figure 15. Shaded relief (left) and the shadow mask (SHAD) layer (right) generated through the 
Otsu classification for the area within Nevada and Arizona USA that is depicted in Figure 12. In 
this case, the dimensionless threshold value was 146.9. In the right panel, black pixels are 
Shadow. 
 

Optional for DSWx-HLS processing, the Otsu method of automatic binary thresholding (Otsu 

1979) may be used to classify the hillshade layer into two classes: shaded and not shaded (e.g., 

Figure 15, right). The Otsu method evaluates the histogram (frequency distribution) of grayscale 

images, distinguishing dark and light features in the image by determining the midpoint in the 

distribution among their modes. It performs best where distinct bimodal frequency distributions 

are present. However, this is difficult to achieve given hillshade results in areas with flat or 

gently undulating terrain. Prior to the calibration process, statistics on the input DEM elevations 

(e.g., range, standard deviation) and DEM-derived terrain characteristics (e.g., slope, aspect, and 

roughness) were analyzed at the tile level to distinguish which tiles should have Otsu 

thresholding applied.  

 

3.2.4.2 Aerosol Overcorrection Mitigation 

During global testing of the algorithm through all seasons of the year, errors were observed in 

DSWx pixel classifications that were error-free in USGS DSWE Collection 1. Some open water 

pixels were misclassified as partial surface water or not water. Further investigation identified 

changes to the Landsat Surface Reflectance Correction (LaSRC) processing that generates the 

HLS input to DSWx-HLS as the cause. Specifically, the interpolation of aerosol values over 

water bodies may sometimes result in pixels with unrealistically low, even negative reflectance 



values in HLS. Although the partial surface water tests still frequently identify these areas as 

partially inundated, they are in reality open water. DSWx-HLS sample products for equinox and 

solstice dates for locations selected around the globe through stratified random sampling (n=98) 

were visually inspected for any indication of this anomaly. Some impact of the aerosol 

overcorrection occurred in approximately 15% of the interior (non-coastal) sites and 26% of the 

sites that included ocean. Therefore, an algorithm subroutine was devised to mitigate this issue 

until a correction to the HLS input surface reflectance can be formulated and made operational. 

 

To avoid any need to incorporate additional ancillary data, the mitigation is based on HLS data 

alone. The HLS Fmask layer is consulted to determine the estimated aerosol class for each pixel 

and to determine which pixels are identified as ‘water’ by the Fmask algorithm. Testing showed 

that the Fmask water labeling algorithm produces commission errors along water features that 

are dynamic - specifically those decreasing in extent in recent times. Therefore, a DSWx-HLS 

decision rule that uses the HLS NIR band as an additional input was created to eliminate these 

commission errors. The rule applied to mitigate aerosol overcorrection impacts where WTR-1 

shows ‘no water’ is: 

 

If WTR-1 is “not water” & (Fmask = 224 | Fmask = 160 | Fmask = 96) & NIR < 1000, 

 set WTR-2 to “open water”, otherwise WTR-2 = WTR-1 

 

The rule applied to mitigate aerosol overcorrection impacts where WTR-1 shows ‘partial surface 

water’ is: 

 

If WTR-2 is “partial surface water” & (Fmask = 224 | Fmask = 192 | Fmask = 160 | 

Fmask = 128 | Fmask = 96) & NIR < 1000, set WTR-2 to “open water”, otherwise  

WTR-2 = WTR-1 

 

In both cases, NIR values shown are the scaled reflectance provided in the HLS product. The 

interpretations of the Fmask values are as follows: 

 

Fmask 224: Water, High Aerosol Fmask 192: High Aerosol 



Fmask 160: Water, Moderate Aerosol Fmask 128: Moderate Aerosol 

Fmask 96: Water, Low Aerosol 

 

Figure 16 provides an example of DSWx-HLS WTR-2 before (left) and after the mitigation has 

been applied (right) for a granule centered on a lake in Ireland that exhibited the 

misclassification of open water due to HLS aerosol overcorrection. 

 

 
Figure 16. The WTR layer before aerosol overcorrection mitigation (left), associated HLS false 
color composite (R: SWIR1; G: NIR; B: Green - Middle) and mitigated/release WTR layer 
(right) for granule centered in Ireland. Inaccurate partial surface water (light blue in left panel) is 
replaced with correct open water (dark blue in right panel). White is ‘not water’ and gray is 
cloud/cloud shadow/cloud adjacent. The sample granule is the HLS scene for tile T29UNV that 
was collected on March 3, 2023. 
 
3.2.5 Interpreted Layer with All Masking Applied (WTR) Calculation 
Much like terrain shaded conditions, non-water covers may appear similar to water when shaded 

by clouds or covered by snow and/or ice. When clouds are thick enough, it is not possible to 

detect surface water using electro-optical satellite observations. In addition, areas around 

cloud/cloud shadow are often masked in surface reflectance products to further reduce the use of 

pixel values that may be affected by cloud cover. These are referred to as ‘cloud adjacent’ pixels. 

The bright, flat spectrum of snow is often a source of confusion for water classifiers and it is not 

possible to detect water under snow. To mitigate the impact of clouds, cloud shadows, cloud 

adjacent pixels, and snow/ice cover, the WTR-2 layer is further processed to reclassify locations 

identified as these features in the Fmask data provided with the input HLS surface reflectance 

scene. The following logical tests are applied: 



 

 If Fmask = snow/ice, set WTR = 252 otherwise WTR = WTR-2 

If Fmask = cloud | Fmask = cloud shadow | Fmask = cloud adjacent, set WTR = 253 

otherwise WTR = WTR-2 

 

The output of this process is the “final water classification” (WTR) layer (Figure 17). 

 
Figure 17. The WTR layer for the South America example area. Open Water: dark blue. Partial 
Surface Water: light blue. Cloud, cloud shadow, adjacent to cloud: grey. 
 

3.2.6 Binary Layer Calculation 

All water classes from the WTR layer are combined to a single water class to facilitate simplest 

application of the data or concerted use of future DSWx products generated from remote sensing 

modalities other than optical (HLS).  The resulting “binary water/not water” (BTWR) Layer 

(Figure 18). 



 

 
Figure 18. The binary water/not water reclassification of WTR to afford most simplistic use of 
DSWx- HLS output. Water: dark blue. Cloud, cloud shadow, adjacent to cloud: grey. 
 

3.2.7 Cloud Layer Calculation 

Cloud and cloud shadow masking is very difficult, particularly in the absence of thermal data, as 

is the case with Sentinel-2 (S30) HLS files. Snow and ice can be difficult to classify for similar 

reasons. The CLOUD layer indicates which pixels are snow or ice as well as which pixels are 

cloud, cloud shadow, and cloud adjacent to provide transparency and facilitate more 

sophisticated use of intermediate products. For example, in Figure 18, note that the WTR-2 layer 

shows valid water that was masked as cloud/cloud shadow in WTR given the input Fmask band 

associated with the input. For some study areas and applications, there is merit in using the 

WTR-2 layer in place of WTR so that less valid data are lost. Figure 19 shows the CLOUD layer 

for the South America example. 



 
 

Figure 19. The CLOUD layer, which indicates cloud, snow, and water related pixel locations 
identified through HLS processing and provided in the HLS Fmask layer. Cloud shadow, 
adjacent to cloud/shadow; cloud: gray; Water: tan; and Snow/ice: cyan.   
 

3.2.8 Confidence (CONF) Layer Calculation 

The original DSWE algorithm included multiple open water and partial surface water classes 

differentiated on the basis of their prevalence or the aggressiveness of the water detection 

algorithm, respectively (Section 3.2.2). Because the OPERA DSWx product suite will eventually 

include data from SAR systems that may not yield multiple open and partial surface water 

classes, the open water high confidence and open water moderate confidence classes as well as 

the conservative partial surface water and aggressive partial surface water classes were collapsed 

into a single open water and a single partial surface water class for DSWx-HLS to facilitate 

harmonization across DSWx products. Although the confidence (CONF) layer lacks the 

simplicity of the WTR and Binary layers, it provides significant additional information for more 



sophisticated and custom manipulation of the DSWx-HLS product by retaining the original water 

classifications. The default use of multiple hues and translucent color representation in the 

CONF layer further increases its utility. For example, at the inlet to the lake in the northwest 

corner of Figure 20, partial surface water classes, areas where water and vegetation are present 

within individual HLS pixels are shown in shades of green. Areas identified by the HLS Fmask 

algorithm as cloud/cloud shadow/adjacent to cloud along the lake in the center east section are 

depicted in translucent gray. DSWx-HLS often correctly identifies areas of water that were 

labeled as cloud during HLS Fmask processing. This symbology allows users to visualize when 

Fmask cloud masking is occluding valid water detections. Users have the option to use the 

CONF layer’s calculations directly or as a guide regarding the selection of the WTR or some 

combination of WTR-2 and CLOUD, for example, to make best use of DSWx- HLS water 

detections for their study area and application. The confidence values interpreted from the 

diagnostic data (Section 3.2.3, Table 3) are indexed by increments of 10 to denote combinations 

of water, cloud/cloud shadow/cloud adjacent, and snow/ice. Table 6 illustrates the calculation of 

CONF layer values. 

 

Table 6. CONF Layer Values based on DIAG, WTR-2, and CLOUD Layer Values. 

Conf Class Clear View 
Value 

With Cloud 
Value (+10) 

With Snow 
Value 
(+20) 

Not Water 0 10 20 
Open Water High Confidence 1 11 21 
Open Water Moderate Confidence 2 12 22 
Partial Surface Water Conservative 3 13 23 
Partial Surface Water Aggressive 4 14 24 

 

This intuitive scheme affords coding of complex combinations while minimizing the associated 

storage requirement. 



 

Figure 20. The CONF layer which shows two open water classes in shades of blue and two 
partial surface water classes in shades of green along with translucent clouds. 
 

3.3 Algorithm Input Variables 

The DSWx-HLS algorithm requires at-surface-reflectance data with Landsat-like bandwidths 

and dynamic range; a DEM, and land cover data (Table 7). The specific globally available 

reflectance and ancillary input files used by the DSWx-HLS algorithm are described in Table 1 

(Section 3.2.1) where specifics of the input HLS band designations (Masek et al., 2021) are also 

provided. DSWx-HLS uses the same Sentinel-2 based military grid reference system (MGRS) 

projection and tiling scheme employed for HLS computation and distribution (Sentinel- 2 Level-

1C product tiling grid released - Sentinel Online (esa.int)). An example of the at-surface 

reflectance data for a single tile is provided as Figure 4 (Section 3.2.2). 

 

 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/news/-/asset_publisher/Ac0d/content/sentinel-2-level-1c-product-tiling-grid-released
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/news/-/asset_publisher/Ac0d/content/sentinel-2-level-1c-product-tiling-grid-released
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/news/-/asset_publisher/Ac0d/content/sentinel-2-level-1c-product-tiling-grid-released


Table 7. Algorithm Input Details 

Variable Dataset Source 
Elevation Copernicus DEM 30 m (GLO-30) 

and Copernicus DEM 90 m (GLO- 
90) 

https://spacedata.copernicus.eu/collecti
ons/copernicus-digital-elevation-model 

Land Cover Type Copernicus 100-m resolution https://lcviewer.vito.be/2015 
Land Cover Intensity ESA WorldCover 10-m resolution https://worldcover2020.esa.int/ 
Surface Reflectance Harmonized Landsat-8 

Operational Land Imager 
(OLI) or Sentinel-2 A/B 
Multispectral Instrument 
(MSI) 

https://lpdaac.usgs.gov/data
/get-started-data/collection-
overview/missions/harmoni
zed-landsat-sentinel-2-hls-
overview/ 

 

Analyses were conducted to select the DEM and land cover data used. Criteria for DEM 

selection included: open availability, timeliness, spatial resolution, geolocation accuracy, quality 

of elevation estimates, and performance in trial application to USGS C1 DSWE error reduction. 

Based upon this evaluation, the same DEM that will be used for processing of NASA-ISRO 

Synthetic Aperture Radar (NISAR) mission products, based on the Copernicus DEM 30 m 

(GLO-30-DGED) and the Copernicus DEM 90 m (GLO-90-DGED), was selected (Table 7). The 

DEM data are custom processed for each HLS scene to mitigate the effects of terrain shadowing 

as described in Section 3.2.4.2. 

 

Land cover selection criteria included open availability, timeliness, and spatial as well as 

thematic resolution. No single dataset satisfactorily met both spatial and thematic resolution 

requirements. The process used to synthesize the DSWx-HLS LAND layer is described in 

Section 3.2.4.1. 

 

3.4 Algorithm Output Variables 

The algorithm results in the production of 10 separate layers in cloud optimized GeoTIFF (COG) 

format (Table 8). Generation of separate layers allows NASA distribution systems to provide the 

user with options for individual or bundled layer download. This affords significant time and 

storage space savings for those who choose to process DSWx-HLS outside of its ‘native’ cloud 

environment. 

 

 



Table 8. Algorithm Output Layers. 

Layer 
Abbreviation 

Layer Long Name Range Data type 

BWTR Binary reclassification of WTR 0-1 Int8 
CLOUD Input HLS Fmask cloud/cloud-shadow/water 

classification 
0-15 Int8 

CONF Confidence layer for WTR 0-24 Int8 
DIAG Diagnostic layer showing the results of each 

of the 5 five water tests applied to each pixel 
0-11111 Int16 

DEM The digital surface model for the tile, used in 
the shadow mask generation (SHAD) 

- Float32 

LAND Land cover mask indicating the various land 
cover classes used for masking of WTR-1 

0-201 Int8 

SHAD Layer showing where terrain shadow masking 
may be applied  

0-1 Int8 

WTR Highest processed output layer (interpreted, 
land cover, terrain shadow, and cloud/cloud 
shadow masks applied) 

0-253 Int8 

WTR-1 Result of reclassifying 32 potential DIAG 
classes to three classes – termed the 
interpreted layer. 

0-2 Int8 

WTR-2 WTR-1 with terrain shadow and land cover 
masking applied 

0-2 Int8 

Note. Algorithm outputs are individual cloud optimized Geotiff (COG) files. Range does not 
include the default fill (no data) value possible given the HLS input, which is 255 for Int8 (8-bit 
integer) datasets and 65535 for Int16 (16-bit integer) datasets. 
   

4  Algorithm Usage Constraints  

The algorithm assumes the surface reflectance data generated for general land cover mapping 

and analysis applications are sufficiently accurate over open and partial surface water features to 

allow spectral mixture model-based decision rules to perform adequately. Fmask cloud, cloud 

shadow, adjacent to cloud/cloud shadow, and snow information is assumed accurate for purposes 

of final WTR classification, although the CONF and WTR-2 layers are provided to the user as 

alternative ‘final products’ when Fmask cloud/cloud shadow data hinder DSWx-HLS 

performance for given locations and/or applications (Section 3.2.3 and 3.2.4). The land cover 

mask (LAND) synthesized from two sources for masking purposes is assumed to provide 

adequately accurate locations of permanent water and wetlands to prevent SHAD application 

where surface water may be detected by the DSWx tests. LAND annual indexing of changes in 



forest cover and developed area classes are assumed to have sufficient temporal resolution to 

capture important removal or exposure of surface water occurrences. 

 

Algorithm performance for liquid water over non-liquid water (e.g., ice) has not been tested. 

Commission errors may occur on steep slopes that may not be removed through land cover 

masking where the Copernicus inputs to the LAND mask may suggest permanent water or 

wetlands exist. This has been observed in places, such as high northern or southern latitudes, and 

at times, such as winter, where persistent shadows exist given steep slopes and north or south- 

facing aspects. The algorithm cannot detect water when or where the vegetation canopy is 

sufficiently dense to obscure most surface water in the pixel. Cloud related and snow/ice masks 

inherited from Fmask may exclude areas where DSWx-HLS accurately detects water, 

particularly under cirrus cloud conditions or where cloud dilation to create cloud adjacent flags 

overestimates the impact of cloud cover. 

 

The two algorithms for creating the terrain shadow mask presented in Section 3.2.4.2 do not 

include ray tracing for detecting cast shadow. Most cast shadows happen in backslope areas that 

are detected by the DSWx-HLS algorithm. However, some flat or fore slope areas behind steep 

mountains, and at high latitude during the winter season (when solar elevation is low), may be 

misclassified as water (commission error) due to the dark HLS reflectance. 

  

5 Performance Assessment 
Algorithm calibration and validation was baselined by the DSWx-HLS product requirements. 

They specify that for 80% of the validation products considered, overall accuracy must be 

greater than or equal to 80% for “open water” and 70% for “partial surface water” given features 

with a minimum area of 3 ha and minimum width of 200 m. 

 

5.1 Validation Methods 
5.1.1 Assessment Site Selection 
 
Because inland water accounts for only 3-4% of the total inland area (Pickens et al., 2020), 

assessment site selection through global stratified random sampling improves efficiency and 

accuracy of DSWx evaluation over techniques based on random or systematic sampling alone. 



The performance verification sites used for algorithm evaluation were drawn from the Pickens et. 

al. (2020) global stratified sample framework depicted in Figure 21. Each point was attributed 

with a percent water as calculated over a 240 km2 surrounding area. 

 

Figure 21. Validation chip locations as selected randomly from the global sample framework of 
Pickens et. al. (2020). The site highlighted by green triangle along the border between Russia 
and Kazakhstan is the chip example shown in Figure 22. (base map data are openly available 
from ©OpenStreetMap and contributors). 

 

For DSWx-HLS performance verification, a 121 km2 area, termed a ‘chip’, was delineated 

within each 240 km2 area identified by Pickens et al. (2020). Next, image ‘pairs’ were extracted 

from the HLS and PlanetScope archives (https://www.planet.com/science/) for the year 2019 

using several criteria. Each chip had to be covered by HLS and PlanetScope data. To provide a 

good indication of product performance across a broad range of applications, HLS cloud cover 

was allowed to vary between 0 and 60% according to HLS metadata. In contrast, to yield the 

highest quality verification data possible, PlanetScope image selections were limited to ‘cloud 

free’ conditions according to its metadata. Next, only PlanetScope data collected within 24-hours 

of acceptable HLS scenes were identified. The resulting metadatabase contains pairs of near-

coincident 2019 HLS/PlanetScope images that adhere to these criteria. Chips were then 

randomly drawn from the database with the goal of obtaining a minimum of 10 sites in each of 

four strata of surface water coverage: Strata 0 (dry - 0% water, n = 10); Strata 1 (sparse > 0 and 

https://www.planet.com/science/


<= 0.08% water, n = 10); Strata 2 (moderate > 0.08 and <= 2% water, n = 13), and Strata 3 (great 

water > 2%, n = 19). That is, each framework was repeatedly, randomly sampled without 

replacement until the performance verification chip database provided the desired minimum 

distributions of percent inundation across the four strata. 

5.1.2 Evaluation Data Generation 

For DSWx-HLS performance verification PlanetScope data were processed using combined 

automated classification, visual inspection, hand editing, independent evaluation, and subsequent 

revision to generate high-resolution open water masks for each chip. In practice, examination of 

low agreement for some DSWx/verification chip pairs sometimes led to reexamination and 

correction of the verification chip, as additional water was identified. Figure 22 shows an 

example of one PlanetScope input and the corresponding verification chip. 

 
Figure 22. A verification chip example: PlanetScope image (left); evaluation dataset derived 
from the PlanetScope image (center) and corresponding DSWx-HLS WTR layer (right).  The 
PlanetScope image was collected one day after the HLS scene used for DSWx input. The location 
of this “truth chip” is shown as a large green dot in Figure 21. 

 

For the image-based comparisons, the coincident high-resolution water maps were aggregated 

into the projection and resolution framework of the DSWx product being evaluated. Percentages 

of water within each HLS pixel, based on the higher-resolution data, were estimated and pixels 

with greater than 50% but less than 100% open water were labeled as partial surface water 

pixels. Areas of cloud, cloud shadow, adjacent to cloud, or snow identified in either the DSWx- 

HLS or the PlanetScope evaluation data were relabeled ‘no data’ in both datasets. Clusters of 

open and partial surface water pixels in the evaluation data that were smaller in area than the 3-

ha minimum mapping unit of the OPERA Project requirement were removed and any 



overlapping DSWx-HLS water pixels were also eliminated. However, the 200-m minimum 

width requirement was not included as a filter due to the complexity and computational resources 

it would necessitate. The impacts of this decision are discussed in the following sections. 

5.1.3 DSWx-HLS and Evaluation Product Comparisons 

OPERA Project requirements reference only ‘accuracy’, that is the number of correct 

classification predictions divided by the total number of classification attempts (expressed as a 

percent): 

 Accuracy = (TP + TN) / (TP + FN + FP + TN) (10) 

where 

 TP = True Positives (class in question is shown where present) 

 TN = True Negatives (absence of class in question is shown where absent)  

 FP = False Positives (class in question is incorrectly shown as present) 

 FN = False Negatives (absence of class is shown where it is actually present) 

 

To avoid extremely high, less informative accuracy values that can result from an imbalance in 

mapped classes, the DSWx-HLS and evaluation product values were sampled at an equal number 

of randomly cast points within each of the open water, partial surface water, and not water 

classes. This resulted in a total of approximately 1,000 samples equally divided among classes 

for each chip. Further, this process was repeated 100 times for each chip. 

To provide additional insights, all the metrics shown in Table 9 were calculated for every 

execution on each chip and summarized within and across all chips. 

Table 9. Performance Assessment Metrics 

Metric Definition Formula Notes 
Accuracy Of the total number of 

evaluation points, how 
many were correctly 
classified? 

(TP + TN) / 
(TP + FN + FP + TN) 

OPERA requirement. 
Equal sampling provides 
conservative accuracy 

estimate 



Precision 
(P) 

Of the total positive 
predictions, what number 
were correct? 

TP / 
(TP + FP) 

Not a requirement. 
Excludes correct ‘not 
water’ predictions that 
boost overall accuracy 

Recall 
(R) 

Of the total number of 
evaluation points, how 
many positive predictions 
were correct? 

TP / 
(TP + FN) 

Not a requirement 

F1 Score Harmonic mean of 
Precision and Recall 

2 * P *R /  
(P + R) 

Provides a conservative 
accuracy estimate 

Note: These performance assessment metrics were calculated to confirm whether DSWx-HLS 
output meets project requirements (row 1) and to provide additional insights regarding algorithm 
performance (rows 2 – 4). 

 

To verify that the algorithm met project performance requirements, accuracy was calculated 

separately for open surface water (OSW) and partial surface water (PSW). The additional metrics 

described in table 9, which provide greater insight regarding DSWx-HLS performance, were 

augmented with the calculation of all water classes combined, regardless of open or partial 

surface water designation. This provides an estimate of DSWx-HLS binary layer performance, 

which is provided in the standard product to facilitate harmonization across the optical (HLS) 

and planned SAR DSWx products. Describe the details of the scientific methods utilized for 

algorithm performance assessment validation. Details provided should match the current 

algorithm maturity. 

5.2 Uncertainties 

The stratified selection of sample chips provides a good range on inundation conditions and 

environments at near-global scale. At the individual chip scale, repeat stratified random sampling 

to produce mean accuracy, precision, and recall results in low uncertainty. However, where 

vegetation cover is particularly prevalent, for example in marsh, wet prairie, and swamp 

environments, it is difficult to rely on classification maps generated from high-resolution optical 

data alone for validation purposes. For this reason, in situ data like those from the Everglades 

Depth Estimation Network (Jones 2015, Jones 2019) and other field data such as wetted 

perimeters collected in the field (Rowe et al., 2021), will be used in direct comparisons with 

DSWx and to train classifications of high-resolution imagery for further evaluation of DSWx 



partial surface water and water under vegetation classes. Because these types of data are difficult 

to compile at global scale, they will serve as evaluation rather than validation efforts. 

The strength of PlanetScope as an evaluation data source is its systematic global coverage with 

high temporal frequency. However, there are conditions for which limited spectral range and 

high signal-to-noise characteristics result in errors in the ‘truth data’ used for performance 

assessment. Although each evaluation chip was independently reviewed through visual 

inspection and when necessary, improved through hand editing, the automated performance 

assessment process still identified errors in the evaluation data. Chips that ‘performed poorly’ 

were investigated in detail, through comparison with even higher spatial resolution and more 

spectrally robust, near coincident and/or time series data. Examples include submeter resolution 

MAXAR satellite or National Aerial Imaging Program (NAIP) airborne data. In several cases, 

the DSWx-HLS algorithm correctly detected partial surface water inundation that was 

misclassified as open water or not water areas using the PlanetScope data. Conversely, ‘wetland’ 

and water bodies identified in the PlanetScope data were in some cases bare ground or vegetated 

areas without inundation. It is possible that additional errors have yet to be uncovered, increasing 

the uncertainty of the performance assessment. However, these types of errors result in lower 

performance metric values, not higher ones. The accuracy estimates are conservative rather than 

optimistic. 

5.3 Validation Errors 

The accumulated results, shown in Table 10, demonstrate that DSWx-HLS surpassed OPERA 

Project requirements, even with the use of the strict, more conservative sampling approach. For 

open surface water, 83% of evaluation products examined passed the 80% accuracy requirement. 

For partial surface water, 85% met the 70% accuracy requirement. And 81% of chips evaluated 

had both OSW and PSW accuracies above the Project requirement threshold. 

 
Table 10. Percentages of evaluation products for which performance requirements were met. 
 

Class Pass Fail Percent 
Open Surface Water (OSW) 43 9 83% 
Partial Surface Water (PSW) 44 8 85% 
Both (OSW + PSW) 42 10 81% 

 
Table 11 shows the statistics regarding all metrics calculated across several treatments. The top 



section of the table includes all chips in the calculation of the metrics. The second section 

includes only those chips that individually passed the performance metrics. 

 

Table 11. Performance metrics statistics by treatment, that is, the DSWx-HLS class(es) being 
evaluated. 
 

Treatment Metric Mean Median St. Dev. 
All chips (n=52)     
OSW, PSW, and NW Accuracy (%) 88.03 90.85 12.93 
OSW Accuracy (%) 96.13 98.90 5.97 

 Precision (%) 84.23 92.55 17.95 
 Recall (%) 95.54 100.0 13.65 
 F1 (%) 97.96 93.41 14.08 
PSW Accuracy (%) 88.35 90.88 12.42 
 Precision (%) 70.64 82.06 34.01 
 Recall (%) 60.09 91.31 42.97 
 F1 (%) 50.56 43.54 40.7 
Passing chips (n=42)     
OSW Accuracy (%) 97.02 99.38 0.05 
 Precision (%) 90.00 100 0.06 
 Recall (%) 95.60 100 0.00 
 F1 (%) 92.00 1 0.06 
PSW Accuracy (%) 93.05 97.67 0.08 
 Precision (%) 90.45 100 0.06 
 Recall (%) 71.81 100 0.00 
 F1 (%) 58.45 74.5 0.12 

 
 

When only sites that pass the requirement threshold are considered (42/52 or 81%), OSW mean 

accuracy is 95%, and PSW mean accuracy is 92%, indicating that under the majority of 

circumstances, accuracy is substantially higher than the averages would indicate. The minimum 

width requirement for features (i.e., 200 m) was not imposed in this analysis, which reduces 

DSWx-HLS performance metric values. 

 



6  Algorithm Implementation 
6.1  Algorithm Availability 

The DSWx-HLS algorithm is currently implemented in the PROTEUS toolbox, which is open, 

and can be accessed through the following GitHub repository: 

https://github.com/opera-adt/PROTEUS 

 

6.2  Input Data Access 

Input data sources are described and provided in Section 3.3 and Table 7.  

6.3 Output Data Access 

DSWx-HLS output is openly available at no cost to the user through NASA EarthData and the 

NASA PO.DAAC. 

 

6.4 Important Related URLs 

The OPERA DSWx Product Suite (DSWx Product Suite (nasa.gov)) provides links to all 

DSWx-HLS documentation and data access. 

 

7  Significance Discussion 
DSWx-HLS targets subpixel inundation at Landsat resolution, uncovering significantly more 

water than is detected than through open water algorithms alone. DSWx-HLS efficiently and 

systematically generates near-global coverage of the highest temporal resolution, finest spatial 

resolution data available on open and partial surface water dynamics.  

 

8  Open Research 
The DSWx-HLS algorithm is currently implemented in Python in the PROTEUS toolbox. The 

source code of the PROTEUS toolbox is open and it can be accessed through this GitHub 

repository: https://github.com/opera-adt/PROTEUS. All evaluation data and python code related 

to their analyses are openly available through this GitHub repository: 

. 

https://github.com/opera-adt/PROTEUS
https://www.jpl.nasa.gov/go/opera/products/dswx-product-suite
https://github.com/opera-adt/PROTEUS
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